
HAWK
version 1.0.1 (July 19, 2023)

https://hawk-sign.info

Joppe W. Bos1, Olivier Bronchain1, Léo Ducas2,3, Serge Fehr2,3, Yu-Hsuan
Huang2, Thomas Pornin4, Eamonn W. Postlethwaite2, Thomas Prest5, Ludo

N. Pulles2, Wessel van Woerden6

1 NXP Semiconductors,
2 Centrum Wiskunde & Informatica,

3 Mathematical Institute, Leiden University,
4 NCC Group,

5 PQShield,
6 Institut de Mathématiques de Bordeaux.

https://hawk-sign.info

2 HAWK

1 Introduction
HAWK is a signature scheme inspired by the introduction of the lattice isomorphism
problem (LIP) to signatures [DvW22], and this specification document is based on the
article that first described a practical variant [DPPvW22b]. The move from the framework
of [DvW22] towards a practical variant in [DPPvW22b] is achieved by introducing module
structure and using simpler sampling procedures to create signatures. The HAWK signature
scheme specified in this document introduces further simplifications and optimisations
compared to the signature scheme introduced in [DPPvW22b], which we will refer to as
HAWK-AC22. In particular, the distribution used to sample private keys in HAWK is
simplified compared to that in HAWK-AC22.

The practical security of HAWK is determined by extensive lattice reduction experiments
along with a detailed cryptanalysis, and the SUF-CMA security of HAWK reduces to a
lattice problem called the one more (approximate) shortest vector problem, or omSVP.
The problem of recovering the secret key directly from the public key is an instance of
the search module lattice isomorphism problem, or smLIP. Compared to HAWK-AC22
the experimental cryptanalysis has been extended and the reduction to omSVP has been
modularised, extended to the qROM and its loss has been made explicit. Throughout we
work under the premise that our formal reductions and problems give us confidence in the
robustness of our design, and our cryptanalysis gives us confidence in the robustness of
our parameters.

We provide two parameter sets, HAWK-512 and HAWK-1024, that our analysis suggests
satisfy NIST-I and NIST-V security levels respectively. We also provide a challenge
parameter set, HAWK-256 to act as a cryptanalytic target.

For didactic purposes we provide an implementation of HAWK in Python 3 that follows
the specification, except for in one explicitly commented place. We also provide an
optimised C implementation of the exact specification of HAWK. Our C implementation is
lightweight, fast, isochronous and without floating points.

We discuss the advantages and limitations of HAWK in Section 1.1.

A note on naming. The name HAWK is similar to another signature scheme: FALCON,
which was selected by NIST for standardisation. Initially, beyond sharing the hash-and-
sign design of FALCON, there were no obvious similarities. However, as part of our key
generation we need to solve an NTRU equation in a similar setting to FALCON and our
HAWK-AC22 implementation reused much of the FALCON code. We therefore, despite the
different underlying hard problems, named this scheme similarly in homage.

1.0.1 Overview of this specification

Technical preliminaries are given in Section 2. The specification of HAWK is given in
Section 3. Implementation and performance details are given in Section 4. In Section 5
we detail our cryptanalytic model and experimental results for HAWK, followed by our
estimated security strengths. In Section 6 we detail our formal security claims and give
the omSVP reduction. We also discuss the omSVP and smLIP assumptions, as well as our
design decisions with respect to security. To aid the ease of use of this document the
preliminaries of Section 2 should be read by all, then

• implementors need only read Sections 3 and 4,

• cryptanalysts need only read Section 5, as well as possibly Section 6 for a discussion
of omSVP and smLIP,

• theoretical cryptographers need only read Section 2 and Section 6 for the definitions
of omSVP, smLIP and reductions.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 3

Table 1: Speed of HAWK. Bracketed values require more RAM, see Table 3.

HAWK-512 HAWK-1024

Speed on x86 “Coffee Lake” with AVX2 (clock cycles)

Key pair generation 8.43× 106 4.37× 107

Signature generation 8.54× 104 (4.37× 104) 1.81× 105 (8.54× 104)
Signature verification 1.48× 105 (1.24× 105) 3.03× 105 (2.55× 105)

Speed on ARM Cortex M4 (clock cycles)

Key pair generation 5.23× 107 2.26× 108

Signature generation 2.80× 106 (1.16× 106) 1.42× 106 (1.23× 106)
Signature verification 1.42× 106 (1.23× 106) 3.01× 106 (2.61× 106)

Table 2: Key and signature sizes for HAWK in bytes.
HAWK-512 HAWK-1024

Private key size 184 360
Public key size 1024 2440
Signature size 555 1221

1.1 Advantages and Limitations
1.1.1 Advantages

Speed. The procedures for generating and verifying signatures are fast on all devices,
including low end devices, see Table 1.

Compactness. The keys and signature sizes are all rather small, see Table 2.

Memory usage. HAWK has a small memory footprint. For example, HAWK-512 requires
no more than 14 kiB of RAM for any algorithm, including the faster variants of signing
and verification.1 If the keys can be generated externally and hardcoded onto the device,
then HAWK-512 and HAWK-1024 can sign and verify using only 6 kiB and 11 kiB of RAM
respectively. This makes HAWK a good candidate for many embedded platforms based on
ARM Cortex-M0(+) cores: products in this range include, for example, the LPC800 series
by NXP, STM32F0 by ST, or the XMC1000 by Infineon (16 KiB of SRAM).

Well suited for various hardware. HAWK is free of floating-point arithmetic. Therefore,
no floating point (double precision) unit is required. This enables one to run HAWK on
many (constrained) devices not equipped with such an FPU.

1A kibibyte (kiB) is 1024 bytes

Table 3: RAM usage of HAWK in bytes. Bracketed values correspond to Table 1.
HAWK-512 HAWK-1024

Key pair generation 14336 27648
Signature generation 4096 (5272) 7168 (9512)
Signature verification 6144 (8768) 11264 (16512)

4 HAWK

Simplicity of distributions. Key generation in HAWK requires samples from a centred
binomial distribution, which is simple to sample from using a source of uniform bits.
Signing requires discrete Gaussian sampling with a fixed width from two cosets of the
integer lattice Z, which is easily achieved using two fixed precomputed tables of sufficient
precision.

Isochronous. Any function within HAWK that depends on secret data has a running
time independent of said data.

Worst-case running time. With high probability a signature is generated without any
internal restarts. In particular, the signing procedures of HAWK-512 and HAWK-1024
restart in approximately 1/200000 and 1/400000 cases respectively.

BUFF transform. Applying the (full) BUFF transform [CDF+20, Fig. 6]2 to HAWK
requires implementors to append a single hash digest to the signature and subsequently
check its value in verification. This hash digest is already internally computed, and the
signing of HAWK follows the necessary design.

1.1.2 Limitations

No efficient masking (yet). Despite the simplicity of requiring only two fixed discrete
Gaussian distributions to be sampled during signing, it is an open research problem to
efficiently mask the table based method we use. On a positive note, besides this component
it is known how to efficiently mask the remainder of the design of HAWK.

Security assumptions (direct key recovery). Recovering the private key from the public
key in HAWK is equivalent to solving an instance of smLIP over the integer lattice Z2n

that follows a distribution implicit in our key generation. While there exists research into
the lattice isomorphism problem over the integer lattice [GS02, Szy03, BM21, BGPSD23,
DPPvW22b, Duc23], the use of the problem in constructive cryptography, especially with
module structure, is relatively new, and would benefit from further attention.

Security assumptions (SUF-CMA). The SUF-CMA security of HAWK reduces to a
new problem: omSVP [DPPvW22b, App. B]. We pick the parameters of HAWK to satisfy
our reduction, so that breaking the SUF-CMA security of HAWK breaks the corresponding
omSVP instance with an explicit loss. This reduction is unidirectional given preimage
resistance for some hash, i.e. we do not know how to break the SUF-CMA security of
HAWK by solving omSVP.

Like smLIP, the use of omSVP in cryptography is new, and would benefit from further
attention. Furthermore, while we set the parameters of HAWK to satisfy our reduction, the
parametrisation of omSVP that we reduce to has some trivial solutions. To remove these
trivial solutions would require us to sample larger keys in our key generation procedure,
which we choose not to do. This approach is indicative of our methodology; we use our
reduction to omSVP to provide confidence in the robustness of the design of HAWK and
our practical cryptanalysis to provide confidence in the robustness of our parameters.

Finally, we do not know how to publicly simulate the signature distribution of HAWK,
à la [GPV08]. Instead, our reduction to omSVP provides a well defined target for the
applicability of learning style attacks [NR09, DN12] to HAWK, which requires further
attention.

2Note that the conference version [CDF+21] numbers its figures differently.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 5

Deviation from (previous) theoretical guarantees. To sign with a narrower discrete
Gaussian and reduce the number of cosets required to be sampled from, HAWK deviates
from the EUF-CMA proof structure of the signature scheme given in [DvW22, Sec. 6]
and therefore requires the omSVP problem for security, rather than the ∆LIP assumption
from that work. Also, the choice to use a centred binomial distribution to simplify the
generation of public keys, while having no practical effect on security according to our
analysis, does not fit the notion of average case distribution given in [DvW22, Sec. 3].

The final three limitations are discussed in more detail in Sections 5 and 6.

1.2 Changelog
Version 1.0.1.

• Fixed some typos in Algorithms 14 and 15. Thanks to Markku-Juhani O. Saarinen
for bringing them to our attention.

6 HAWK

2 Preliminaries
Vectors and matrices. We denote (column) vectors in lowercase as e.g. v and the number
of elements in such a vector as len(v). A vector v is formed of elements v0, . . . , vlen(v)−1,
that is, we index from 0. We denote matrices in uppercase as e.g. B and index from 0, so
that if B has dimensions r × s the top right entry is b0,0 and the bottom right entry is
br−1,s−1. For any object X with 0 and 1 elements and positive integer n we define In(X)
as the identity matrix in Xn×n.

Distributions. We consider two families of discrete distributions.
The first is the centred binomial distribution of parameter η ∈ Z≥1. If X ∼ Bin(η)

then

Supp(X) = {−η,−η + 1, . . . , η}, Pr[X = x] = 1
22η
·
(

2η

x + η

)
(1)

for x ∈ Supp(X). It has E[X] = 0 and V[X] = η/2. Sampling X ∼ Bin(η) is easily
achieved as (2η∑

i=1
xi

)
− η, (2)

for x1, . . . , x2η sampled as i.i.d. bits, i.e. from the uniform distribution over {0, 1}.
The second is the discrete Gaussian distribution on 2Z + c of parameters σ ∈ R>0 and

c ∈ R. Let

ρσ : R→ R, x 7→ exp(−x2/2σ2). (3)

If X ∼ D2Z+c,σ then

Supp(X) = 2Z + c, Pr[X = x] = 1∑
z∈2Z+c ρσ(z) · ρσ(x), (4)

for x ∈ Supp(X). We consider only c ∈ {0, 1} in HAWK and for these two values of c, it
holds E[X] = 0. For σ large enough, V[X] ∈ σ2 · (1 + O(e−σ2)) [MR04].

For higher dimensions n ∈ Z≥2, a sample x ∈ Rn from the discrete Gaussian distribution
on 2Zn + c of parameters σ ∈ R>0 and c ∈ Rn is obtained by sampling each xi ← D2Z+ci,σ

for 0 ≤ i < n independently and combining these into a vector x ∈ Rn.

Rényi divergence. For two distributions P, Q with supports Supp(P) ⊆ Supp(Q) we
define the Rényi divergence (RD) of order a ∈ (1,∞) as

Ra(P ∥Q) =

 ∑
x∈Supp(P)

P (x)a

Q(x)a−1

1/(a−1)

. (5)

It is not symmetric in its arguments, and does not verify a triangle inequality. When the
Rényi divergence is finite, which it will be for our applications, we think of it as a value
1 + δ for δ ≥ 0; the smaller δ is the closer the two distributions. Note that for any P, Q on
which the Rényi divergence is finite, Ra(P ∥Q) is non decreasing as a function of a, i.e. a
larger order a defines a stricter notion of closeness.

We recall three properties of Ra(P ∥Q) and a useful result [BLL+15, Pre17]. For two
distributions P, Q and two families (Pi)i, (Qi)i we have

• (data processing inequality) for any function f , Ra

(
P f ∥Qf

)
≤ Ra(P ∥Q),

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 7

• (multiplicativity) Ra(
∏

i Pi ∥
∏

i Qi) =
∏

i Ra(Pi ∥Qi),

• (probability preservation) for event E ⊆ Supp(P), Q(E) ≥ P (E)a/(a−1)
/Ra(P ∥Q).

Intuitively the data processing inequality says that new distributions P f , Qf formed by
“processing” the output of P, Q with some function f can never increase the divergence.
We often consider P as an inexact realisation of some ideal distribution Q and the event
E as some adversary winning a search game; in this setting the probability preservation
inequality allows us to bound above the probability of an adversary winning the search
game using distribution P . We also consider the order a as a parameter that we may
optimise over.

Finally, we note that [Pre17, (4)] gives us the following useful condition on the Rényi
divergence. If a search game is λ-bit secure when instantiated with Q, the game samples
Q at most qs times, and for an order a ≥ 2λ + 1

Ra(P ∥Q) ≤ 1 +
1

4qs
, (6)

then the search game is at least (λ− 1)-bit secure when instantiated with P with the same
sample bound qs.

Number fields. We make use of number fields and their rings of integers. In particular
for n = 2m with m ∈ {8, 9, 10} we consider the power of two cyclotomic number field
Kn = Q[X]/(Xn + 1) and its ring of integers Rn = Z[X]/(Xn + 1). For a polynomial
f ∈ Kn we let

f = f [0] + f [1]X + · · ·+ f [n− 1]Xn−1,

and define a bijection that maps it to the column vector of its coefficients

vec : Kn → Qn, f 7→ (f [0], . . . , f [n− 1]). (7)

Polynomials are thus also sequences of their n coefficients, in ascending degree order.
We also define

rot : Kn → Qn×n, f 7→ (vec(f), vec(fX), . . . , vec(fXn−1)), (8)

sometimes called the negacyclic matrix of f . We extend vec and rot to Kr
n and Kr×r

n as

vec : Kr
n → Qnr, f = (f0, . . . , fr−1) 7→ (vec(f0), . . . , vec(fr−1)) (9)

and

rot : Kr×r
n → Qnr×nr, B 7→

 rot(b0,0) · · · rot(b0,r−1)
...

rot(br−1,0) · · · rot(br−1,r−1)

 , (10)

where context informs the correct version of vec or rot to use. These number fields are CM-
fields and therefore have an involutive automorphism representing complex conjugation;
the Hermitian adjoint. We denote by

f⋆ = f [0]− f [n− 1]X − · · · − f [1]Xn−1 (11)

the Hermitian adjoint of f . If B ∈ Kr×r
n then B⋆ is the matrix obtained by applying the

Hermitian adjoint to each entry of Bt, the transpose matrix of B.

8 HAWK

Inner product and norm. We define an inner product over Kn as

⟨ · , · ⟩ : Kn ×Kn → Q, (f, g) 7→ 1
n

Tr(f⋆g) , (12)

where Tr(·) is the algebraic trace over the field extension Kn/Q. Due to the normalisation
factor 1

n , if f, g ∈ Kn then ⟨f, g⟩ equals the Euclidean inner product of vec(f) and vec(g).
We define two norms,

∥ · ∥ : Kn → Q, f 7→
√
⟨f, f⟩, (13)

∥ · ∥∞ : Kn → Q, f 7→ max
0≤i<n

(|f [i]|). (14)

Note that these norms coincide with the “Euclidean” ℓ2 and “infinity” ℓ∞ norms of vec(f)
respectively. In particular, we may calculate

∥f∥2 = f [0]2 + · · ·+ f [n− 1]2. (15)

We extend the inner product in (12) to Kr
n via summation as

⟨ · , · ⟩ : Kr
n ×Kr

n → Q, (f , g) 7→ ⟨f0, g0⟩+ · · ·+ ⟨fr−1, gr−1⟩. (16)

Similarly, we extend the norms in Eqs. (13) and (14) to Kr
n as

∥ · ∥ : Kr
n → Q, f 7→

√
∥f0∥2 + · · ·+ ∥fr−1∥2, (17)

∥ · ∥∞ : Kr
n → Q, f 7→ max

0≤i<r
(∥fi∥∞). (18)

These extended norms coincide with the ℓ2 and ℓ∞ norms of vec(f) in Qnr. In particular,
we may calculate

∥f∥2 = f0[0]2 + · · ·+ f0[n− 1]2 + · · ·+ fr−1[0]2 + · · · fr−1[n− 1]2. (19)

Q-inner product and Q-norm. For B ∈ Kr×r
n such that the columns of B are Kn-

linearly independent, we consider the Hermitian form associated to the self adjoint matrix
Q = B⋆B. We now define the Q-inner product, or the inner product with respect to this
form, as

⟨ · , · ⟩Q : Kr
n ×Kr

n → Q, (f , g) 7→ 1
n

Tr(f⋆Qg) . (20)

Note that (20) specialises to (16) whenever Q = Ir(Kn).
From the Q-inner product one may naturally define the Q-norm as

∥ · ∥Q : Kr
n → Q, f 7→

√
⟨f , f⟩Q. (21)

We also have the useful identities, when Q = B⋆B for B with Kn-linearly independent
columns and f , g ∈ Kr

n

⟨Bf , Bg⟩ = ⟨f , g⟩Q, ∥Bf∥ = ∥f∥Q. (22)

These allow us to translate between the Q-norm and the (identity) norm if we know such
a B.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 9

Moving from structured to unstructured. At various points we will implicitly consider
“structured” objects, e.g. matrices in R2×2

n , as corresponding “unstructured” objects,
e.g. matrices in Z2n×2n, via vec and rot. This is particularly the case in our experimental
cryptanalysis, where we do not know how to exploit this structure and our tools work on
matrices over the rationals or integers. This approach is also used in the implementation.
We note here that for B ∈ Kr×s

n and C ∈ Ks×t
n we have

BC = rot−1(rot(B) rot(C)),

where the inverse rot function is well defined because the product rot(B) rot(C) will
consist of r × t negacyclic blocks of size n× n. In the case where t = 1 this collapses to
Bc = vec−1(rot(B) vec(c)). Also, for some Hermitian matrix Q ∈ Kr×r

n and f , g ∈ Kr
n we

have
⟨f , g⟩Q = vec(f)t rot(Q) vec(g).

In short, to compute products and norms, we may pass from structured objects to
unstructured objects.

However, in the case of performing lattice reduction on rot(B) with B ∈ Kr
n, the

(unstructured) reduced basis C = rot(B)U ∈ Qnr for U ∈ GLnr(Z) is generally not of a
“structured” form, i.e. not of the form rot(B′) for some B′ ∈ Kr

n. We discuss this more in
Section 5.

2.1 High level algorithmic description of HAWK
Here we give a high level description of the algorithms of HAWK. The high level descriptions
of key generation, signature generation and signature verification for HAWK can be found
in Algorithms 1, 2 and 3 respectively. These descriptions of the algorithms leave many
subroutines undefined, and are not intended to be implemented; instead implementors are
encouraged to read Sections 3 and 4. We assume n is a power of two and we assume the
parameters (η, saltlenbits, σsign, σverify), which depend on n, are known. We do not include
subroutines for encoding and decoding data, but we do indicate where checks regarding
encoding take place. Finally, we often compute the output of a function H on some data.
In the full specification H is realised as SHAKE256 and varying amounts of output data
are used depending on n and the point of use in a given algorithm. In this high level
description we do not state the output length used, except when necessary, or specify how
an object input to H may be considered as a bitstring.

Algorithm Sketch 1 High level HawkKeyGen
Ensure: B ∈ GL2(Rn) and Q = B⋆B

1: Sample coefficients of f, g ∈ Rn i.i.d. from Bin(η)
2: if f-g-conditions(f, g) is false then restart
3: r ← NTRUSolve(f, g)
4: if r is ⊥ then restart
5: (F, G)← r

6: B←
(

f F
g G

)
, Q← B⋆B

7: if KGen-encoding(Q, B) is false then restart
8: hpub← H(Q)
9: return (pk, sk)← (Q, (B, hpub))

Key generation. Key generation in HAWK consists of sampling a secret unimodular
matrix B ∈ GL2(Rn) from a distribution that is implicitly determined by a centred binomial
distribution and the algorithm NTRUSolve.

10 HAWK

First, two polynomials f, g ∈ Rn have their coefficients i.i.d. sampled from Bin(η),
where η depends on the security parameter n. The conditions that make up f-g-conditions
have several purposes, such as allowing for efficient constant time procedures within the
algorithm NTRUSolve that follows, and to abide by the results of our practical cryptanalysis.
The algorithm NTRUSolve outputs F, G ∈ Rn such that fG− gF = 1Rn

, and such that
F, G have somewhat small entries. We restart if NTRUSolve fails; this can happen if no
such (F, G) exist, or because NTRUSolve fails to find them. The public key Q is then the
Hermitian matrix B⋆B.

The conditions that make up KGen-encoding check whether the keys can be properly
encoded. Finally, we compute hpub, a hash of the public key, which is included in the
secret key.

The recovery of sk from pk is an instance of the search module lattice isomorphism
problem from a distribution determined by HawkKeyGen, see Section 6. We approach this
cryptanalytic task experimentally via lattice reduction in Section 5. Intuitively, knowledge
of B allows one to efficiently find short vectors in various cosets of Z2n, whereas knowledge
of Q allows one to calculate the lengths of elements.

Algorithm Sketch 2 High level HawkSign
Require: A message m and secret key sk = (B, hpub)
Ensure: A signature sig formed of a uniform salt salt ∈ {0, 1}saltlenbits and s1 ∈ Rn

1: M ← H(m ∥ hpub)
2: salt← Rnd(saltlenbits)
3: h← H(M ∥ salt)
4: t← B · h mod 2
5: x← D2Z2n+t,2σsign

6: if ∥x∥2 > 4 · σ2
verify · 2n then restart

7: w← B−1x
8: if sym-break(w) is false then w = −w
9: s← 1

2 (h−w)
10: s1 ← Compress(s)
11: if sig-encoding(salt, s1) is false then restart
12: return sig← (salt, s1)

Signing. Signing in HAWK consists of using the message to determine a target coset
2R2

n +h of 2R2
n. A random salt is used to make this choice of target coset non deterministic.

A signature is the salt and (a compressed version of) a vector s. This signature vector s is
related via h to a vector w which is in the target coset and short under ∥ · ∥Q.

First two hashes are calculated; the first over the message m and hpub, then a uniform
salt salt is sampled, which is hashed with the output of the first hash. The function Rnd(r),
on Line 2 of Algorithm 2, returns a uniform bitstring of length r. The function is called
with input saltlenbits, which depends on n. This design that hashes twice is chosen so that
HAWK can be easily adapted to make use of the BUFF transform [CDF+20]. The output
of the second hash has length 2n and is interpreted as a binary vector in R2

n.
We then sample a vector x from the discrete Gaussian distribution over 2Z2n + t for

t = vec(Bh) with the width parameter 2σsign. Note that for this purpose, it is only required
to know the value of t modulo 2. We then interpret the sampled x as an element of R2

n.
Note that w = B−1x ∈ 2R2

n + h is in the target coset and that ∥w∥Q = ∥x∥. If ∥x∥ is too
long the signature would fail in verification, so we restart.

The condition sym-break prevents a simple weak forgery attack. Since h−w ∈ 2R2
n,

we have s ∈ R2
n and that w can be publicly recomputed from s and h. The salt salt and a

compressed version of s form the signature. This compression operation does not have

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 11

any secret information as input. Finally, sig-encoding checks whether the signature can be
properly encoded.

A strong signature forgery requires one to find a short vector w ∈ 2R2
n + h such that

∥w∥Q ≤ 2 · σverify
√

2n holds for uniform h ∈ R2
n. Equivalently, one must find a vector

s ∈ R2
n that satisfies ∥h − 2s∥Q ≤ 2 · σverify

√
2n. Both of these conditions can be stated

equivalently under ∥ · ∥ as finding a short vector in the coset 2R2
n + Bh or a close vector in

2R2
n to Bh. We approach this cryptanalytic task via estimating the complexity of lattice

reduction based approaches to finding close vectors in Section 5.

Algorithm Sketch 3 High level HawkVerify
Require: A message m, a public key pk = Q, and a signature sig = (salt, s1)
Ensure: A bit determining whether sig is a valid signature on m

1: hpub← H(Q)
2: M ← H(m ∥ hpub)
3: h← H(M ∥ salt)
4: s← Decompress(s1, h, Q)
5: w← h− 2s
6: if lenbits(salt) = saltlenbits and s ∈ R2

n and sym-break(w) and ∥w∥2
Q ≤ 4 · σ2

verify · 2n
then

7: return 1
8: else
9: return 0

Verification. Verification in HAWK recomputes values internal to Algorithm 2 from the
signature sig, the message m and pk. Ultimately it recomputes h, then s via Decompress,
and then w. A series of conditions are then checked. Since both Compress and Decompress
are public functions they do not affect security, and in Sections 5 and 6 we argue about a
version of HAWK that does not perform these operations – i.e. we consider both Compress
and Decompress to be the identity function on their first argument.

However, Compress and Decompress can affect correctness, whenever

Decompress(Compress(s), h, Q) ̸= s. (23)

By carefully selecting parameters we make sure this happens with a negligible probability.

12 HAWK

3 Specifications
Here we give the specification for HAWK. In Section 3.1 we give more details regarding
key generation, signing and verification. In Section 3.2, and in particular in Table 4, we
give parameters for HAWK. In Section 3.3 we detail our encoding and decoding procedures.
Finally, in Sections 3.4, 3.5 and 3.6 we detail key generation, signature generation and
verification, respectively.

3.1 Overview
HAWK is a signature scheme with the following characteristics:

• Private keys, public keys and signatures use fixed size encodings. For public keys and
signatures, a compression mechanism is used with variable output sizes, but padding
is applied so that a fixed size specified in the scheme parameters is achieved. Key
pair generation and signature generation are restarted if the public key or signature
would exceed the target size.

• The signed data is processed once with SHAKE256; there is no random or key-
dependent preamble, so that streamed processing of large messages with minimal
RAM usage is possible, and the bulk of the data can be processed before knowing
the public or private key (and even before knowing which HAWK parameter set is to
be used).

Notation. We collect some additional notation that will be used throughout the formal
specification.

The notation x[i] is used to denote the ith element of any sequence x of values. Indices
always start at 0, i.e the first element of x is x[0]. The notation x[j:k] stands for the
subsequence of x for indices i such that j ≤ i < k, i.e. the start index is included, but the
end index is excluded, which corresponds to the notation used in several programming
languages, such as Python, Go or Rust. Recall that the number of elements in a sequence
x is denoted len(x). For additional clarity, when x is a sequence of bits, we may write
lenbits(x) to denote the number of bits in x.

To go between bit sequences (of arbitrary lengths) and numbers, we define the EncodeInt
and DecodeInt functions.

• For an integer k ≥ 0 and a k-bit sequence x0x1 . . . xk−1, we define

DecodeInt(x0x1 . . . xk−1, k) =
k−1∑
i=0

xi2i.

• For integers k ≥ 0 and 0 ≤ x < 2k, EncodeInt(x, k) is defined as the k-bit sequence
x0x1 . . . xk−1 for which x = DecodeInt(x0x1 . . . xk−1, k) holds.

For k = 0 we define “EncodeInt(0, 0)” to be the empty sequence. Moreover, for an integer
x with 0 ≤ x < 2k, we define revk(x) as the integer associated to the bit-reversal of
EncodeInt(x, k), i.e.,

revk

k−1∑
j=0

xj2j

 =
k−1∑
j=0

xj2k−1−j .

A cryptographically secure random source that outputs uniformly random bits is
denoted Rnd. For an integer k, the notation Rnd(k) specifies the process of obtaining k
new, freshly generated random bits.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 13

3.1.1 Key Pairs

HAWK is defined over a degree n, which is a power of two (equal to 256, 512 or 1024).
Most computations are performed on polynomials with integer coefficients, taken modulo
Xn + 1. A HAWK private key is a randomly generated basis for the lattice Z2n, consisting
of four polynomials f , g, F and G, where f and g have small coefficients and together
they satisfy the NTRU equation

fG− gF = 1 (mod Xn + 1), (24)

i.e. the NTRU modulus is one. The lattice secret basis B and its inverse B−1 are

B =
(

f F
g G

)
, B−1 =

(
G −F
−g f

)
. (25)

The public key is Q = B⋆B, which is explicitly

Q =
(

q00 q01
q10 q11

)
=
(

f⋆f + g⋆g f⋆F + g⋆G
F ⋆f + G⋆g F ⋆F + G⋆G

)
. (26)

The matrix Q is self adjoint: q00 = q⋆
00, q11 = q⋆

11, and q10 = q⋆
01. Moreover, a consequence

of the NTRU equation is that q00q11 − q01q10 = 1 holds. We can thus always reconstruct
the whole of Q from q00 and q01 only.

The generation of a new key pair is the following process.

• Generate kgseed, a random seed, from a cryptographically secure source of random
bits.

• Sample the coefficients of f and g in a deterministic manner seeded with kgseed from
the centred binomial distribution with the appropriate parameter.

• Verify a few conditions on f and g, e.g. that they both have odd parity and that the
ℓ2 norm of (f, g) is not too small. If the conditions are not fulfilled, restart with a
new seed.

• Find polynomials F and G that complete the basis, i.e. such that fG − gF = 1.
Because there may not exist any solution (F, G), this step might fail. In that case,
we restart with a new seed.

• Next, a well chosen multiple of (f, g) is subtracted from (F, G) to make (F, G) shorter.
Optimised implementation methods, that combine completion and reduction, have
been published previously [PP19, Por23]. This is the most expensive part of the key
pair generation.

• The public key may also fail to be encodable within the target public key size defined
in the scheme parameters; in that case, restart with a new seed.

The key pair generation process is detailed in Section 3.4. The actual encoding format
of the private key only contains parts of the private elements, namely:

• kgseed (from which f and g can be regenerated using the specified deterministic
process),

• F mod 2 and G mod 2 (i.e. the least significant bit of each coefficient of F and G),
and

• hpub, a hash of the public key.

The public key itself encodes q00 and q01, which are enough to represent the entire
matrix Q. Moreover, q00 being itself self adjoint, only half of its coefficients need to be
encoded.

14 HAWK

3.1.2 Signature Generation

Signature generation proceeds with the following steps.

• Decode the elements of the private key.

• Compute f, g from kgseed.

• Compute the hash M = SHAKE256(m ∥ hpub). Recall hpub is part of the private
key.

• Generate salt, a random salt value.

• Compute the binary vector h = SHAKE256(M ∥ salt) of size 2n bits (the two
coordinates of h are the polynomials h0 and h1, whose coefficients have value 0 or 1).

• Sample the vector x (of dimension 2n) from a discrete Gaussian distribution, centred
on zero and of width 2σsign, over the lattice coset Z2n + Bh. Note that here we are
forming B from the recomputed (f, g) and (F mod 2, G mod 2), which are sufficient
to determine this coset. If the ℓ2 norm of x exceeds a given threshold, restart with a
new salt.

• Compute w = B−1x and discard w0. In Algorithm 15 only w1 is calculated.

• Check whether w1 fulfils a symmetry breaking condition (sym-break). If not, replace
w1 by −w1. This step prevents a simple weak forgery attack.

• Compute s1 = (h1 − w1)/2. Note that we could have equivalently computed s =
(h−w)/2 and then discarded s0. As such, this represents the application of Compress
from the high level description in Algorithm 2.

• Encode salt and s1. The encoding fails when a coefficient of s1 is too large or the
encoded object becomes too large for the fixed target signature size. If this happens,
restart signing with a new salt.

The signature generation process is fully specified in Section 3.5. Including only the
second entry of the vector s = (s0, s1) in the signature encoding format makes signatures
smaller, and also speeds up signature generation since only s1 has to be computed. However,
it then requires the signature verifier to recompute s0 from the signed data, the public key
and s1.

3.1.3 Signature Verification

The signature verification process is the following.

• Decode the public key Q and the two signature elements salt and s1 from their
respective formats.

• As in signature generation, recompute M as a hash over input data (m) and the
hashed public key (hpub). Then recompute h as a hash over M and the salt (salt).

• Compute w1 = h1 − 2 · s1. This equals w1 from the discussion in Section 3.1.2 above.

• Verify that sym-break(w1) is fulfilled.

• Recompute s0 using

s0 =
⌈

h0

2 + q01

q00

(
h1

2 − s1

)⌋
. (27)

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 15

Table 4: Parameter sets for HAWK. Note that key and signature sizes are specified in bytes.

Name HAWK-256 HAWK-512 HAWK-1024

Targeted security Challenge NIST-I NIST-V
Bit security λ 64 128 256

Private key size privlenbits/8 (bytes) 96 184 360
Public key size publenbits/8 (bytes) 450 1024 2440
Signature size siglenbits/8 (bytes) 249 555 1221

Degree n 256 512 1024
Transcript size limit qs 232 264 264

Centred binomial η for sampling (f, g) 2 4 8
Signature std. dev. σsign 1.010 1.278 1.299
Verification std. dev. σverify 1.042 1.425 1.571
Key recovery std. dev. σkrsec 1.042 1.425 1.974
Salt length saltlenbits 112 192 320
Keygen. seed length kgseedlenbits 128 192 320
Hashed pubkey length hpublenbits 128 256 512

Bit lengths for q00 (low00, high00) 5, 9 5, 9 6, 10
Bit lengths for q01 (low01, high01) 8, 11 9, 12 10, 14
Bit length for q11 (high11) 13 15 17
Bit length for s0 (highs0) 12 13 14
Bit lengths for s1 (lows1, highs1) 5, 9 5, 9 6, 10
Signature decompression bound β0 1/250 1/1000 1/3000

This recomputation will be performed with integer computations using a fixed-point
interpretation of 32-bit integers. This represents Decompress from the high level
description in Algorithm 3.

• Compute w0 = h0 − 2 · s0. In the implementation this step and the one above both
happen internally in RebuildS0 in Algorithm 20.

• Let w = (w0, w1). Verify that ∥w∥Q is not too long.

Signature verification is detailed in Section 3.6. Compared to the high level description
of Algorithm 3 the length of the decoded salt and s ∈ R2

n are not checked explicitly.
Instead, the decoding procedure only gives a salt of the desired length from the signature
and an s1 ∈ Rn by construction of the encoding format. By design, s0 is rebuilt as an
integer by (27), so s ∈ R2

n is automatically satisfied.
The scheme parameters and keys are chosen such that the probability, that (27) fails

to recover s0, is negligible.

3.2 Parameters
HAWK is defined for three sets of parameters, shown in Table 4. The name of a HAWK
parameter set is derived from the degree n, which is taken to be a power of two.

The HAWK-256 parameter set is a “challenge” because its security level, estimated at
“around 64 bits”, is too low for submission to NIST. However, it is a good cryptanalytic
target, as breaking it is not immediate and a forgery or private key recovery would provide
interesting data. At most 232 signatures may be “safely” generated within the target
security level of HAWK-256, as opposed to 264 for HAWK-512 and HAWK-1024.

16 HAWK

HAWK-512 and HAWK-1024 are meant to fulfil NIST-I and NIST-V security levels,
respectively.

3.3 Encoding and Decoding
Encoding and decoding rules are used in HAWK for representing keys and signatures, but
also internally for injecting integers as input to SHAKE256, and interpreting the SHAKE256
output as a sequence of 64-bit integers.

3.3.1 Bit Ordering

All input and output operations are described as working over sequences of bits. Such a
sequence is written in left-to-right order. The “∥” operator denotes concatenation. Most
software implementations work over bytes (octets); in that case, it is assumed that bits
have been grouped into bytes in a way compatible with algorithm h2b from section B.1 of
FIPS 202 [FIP15], which itself follows the rules from [Kec11]: if eight successive bits are
x0x1x2 . . . x7, then they encode the numerical byte value x =

∑7
i=0 xi2i. We denote the

mapping of a byte into 8 bits by EncodeInt(x, 8) = x0 ∥ x1 ∥ x2 ∥ . . . ∥ x7.
A potential source of confusion is the terminology of shift operators available in many

programming languages: if some bits in a sequence should be moved leftward, then this
corresponds to a right shift on the integer value corresponding to this sequence through
the mapping embodied by EncodeInt and DecodeInt. Within this specification, we do
not use the “left” and “right” directions; such operations on integers are expressed as
multiplications or divisions by powers of two.

3.3.2 SHAKE256w and SHAKE256x4

SHAKE256, as specified in FIPS 202 [FIP15], outputs a sequence of bits. We define
SHAKE256w as SHAKE256, with the output bits grouped into 64-bit words interpreted as
integers. Specifically, for a binary input m, we define SHAKE256w(m) such that, for any
i ≥ 0,

SHAKE256w(m)[i] =
63∑

j=0
SHAKE256(m)[64i + j] · 2j (28)

= DecodeInt(SHAKE256(m)[64i : 64i + 64]). (29)
Internally, SHAKE256 implementations that do not use the “bit interleaving” strategy
usually keep the sponge state as an array of 25 64-bit words, and the output of SHAKE256
is really a little-endian encoding of some of these state words; the word output stream
defined here is then exactly the sequence of these words.

We then define the SHAKE256x4 function, which is four SHAKE256w instances working
on almost the same input, and whose respective outputs are interleaved with word
granularity. Namely, for a binary input m,

SHAKE256x4(m)[4i + j] = SHAKE256w(m ∥ EncodeInt(j, 8))[i]
for all i ≥ 0, and 0 ≤ j ≤ 3.

An implementation of HAWK running on an architecture offering SIMD opcodes may
choose to run some of these internal SHAKE256 instances in parallel; the interleaving
naturally corresponds to the effect of running four parallel instances with 256-bit SIMD
registers, each register containing one SHAKE256 state 64-bit word for each of the four
SHAKE256 instances. However, it is also possible to run the SHAKE256 instances sequen-
tially, reusing the same memory space for the successive SHAKE256 states; all usages of
SHAKE256x4 output within HAWK have been designed specifically to allow such RAM
efficient usage on small embedded systems with severe RAM size constraints.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 17

3.3.3 Low Bit Extraction

Given a polynomial u with integer coefficients, u mod 2 denotes the polynomial such
that (u mod 2)[i] = u[i] mod 2 for 0 ≤ i < n; i.e. each coefficient of u mod 2 is the least
significant bit (with value 0 or 1) of the corresponding coefficient of u.

Since polynomials are also sequences of their coefficients, a binary polynomial u mod 2
is also a sequence of n bits (u[0] mod 2 to u[n − 1] mod 2) and can be used as such in
encoding and decoding procedures.

3.3.4 Private Key Encoding

A HAWK private key, mathematically, consists of four polynomials f , g, F and G. As
will be detailed in Section 3.4, f and g are generated from a random seed (kgseed), and
only F mod 2 and G mod 2 are needed for signature generation. The encoding of the
private key is thus the concatenation of kgseed, F mod 2, G mod 2, and hpub, the latter
being a hash of the public key. This is expressed in EncodePrivate (Algorithm 4) and
DecodePrivate (Algorithm 5). Note that the lengths of kgseed and hpub are fixed: for a
given HAWK parameter set, they are defined in the scheme parameters (Table 4).

Algorithm 4 EncodePrivate: Private key encoding
Require: Private seed kgseed, polynomials (F mod 2, G mod 2), hashed public key hpub
Ensure: Encoded private key

1: return kgseed ∥ (F mod 2) ∥ (G mod 2) ∥ hpub

Algorithm 5 DecodePrivate: Private key decoding
Require: Encoded private key priv
Ensure: Private seed kgseed, polynomials (F mod 2, G mod 2), and hashed public key

hpub
1: kgseed← priv[0 : kgseedlenbits]
2: F mod 2← priv[kgseedlenbits : kgseedlenbits + n]
3: G mod 2← priv[kgseedlenbits + n : kgseedlenbits + 2n]
4: hpub← priv[kgseedlenbits + 2n : kgseedlenbits + 2n + hpublenbits]
5: return (kgseed, F mod 2, G mod 2, hpub)

3.3.5 Golomb–Rice Compression

Polynomials in HAWK public keys and signatures use a variable length encoding with
Golomb–Rice compression of coefficients. Each integer element is split into a sign bit, a
fixed length part comprising the low order bits of the value, and a variable length part
that encodes the high order bits of the value. For a sequence of k values to encode, the
k sign bits are first produced, followed by the k low parts of the values, then the k high
parts. In all uses of this encoding in HAWK, k is a multiple of 8, ensuring that the sign bit
chunk and the low part chunk start on byte boundaries.

The CompressGR function (Algorithm 6) takes as input a sequence of integers x (of
length k, such that k ≡ 0 mod 8), as well as two sizes, low and high; the coefficients of x
must be such that −2high ≤ x[i] < 2high for all 0 ≤ i < k.

In plain words, for each integer value z = x[i] we perform the following:

• A sign bit is emitted, of value 0 if z ≥ 0, or 1 if z < 0. In the latter case, z is
replaced with its ones’ complement −z − 1 (in a typical software implementation,

18 HAWK

Algorithm 6 CompressGR: Golomb–Rice compression
Require: Integer sequence x[0:k], sizes low and high
Ensure: A compressed encoding y (sequence of bits), or ⊥ on error

1: Set y to an empty sequence of bits.
2: Set v to an empty sequence of integers.
3: for i = 0 to k − 1 do
4: s← 1 if x[i] < 0, or 0 if x[i] ≥ 0
5: y ← y ∥ s
6: v ← v ∥ x[i]− s(2x[i] + 1)
7: if v[i] ≥ 2high then
8: return ⊥
9: for i = 0 to k − 1 do

10: y ← y ∥ EncodeInt(v[i] mod 2low, low)
11: for i = 0 to k − 1 do
12: y ← y ∥ EncodeInt(0, ⌊v[i]/2low⌋) ∥ 1
13: return y

this is equivalent to a XOR between z and −s, where s is the sign bit). Note that
now z ≥ 0.

• The lowest bits of z are emitted as is; this is the fixed size part. Then z is scaled
down by low bits (floored division by 2low).

• Finally, exactly z bits of value 0 are emitted, followed by a bit of value 1 which
marks the end of the encoding for that integer. This is the variable size part.

In all usages of CompressGR in HAWK, the maximum size is such that high ≤ low + 4. As
a consequence the variable size part of an encoded integer cannot be longer than 16 bits
(including the terminating 1).

Algorithm 6 returns a failure indicator (⊥) if the input is invalid, i.e. at least one of
the input integers is not in the expected range. This check may be omitted if the input is
known to be in the proper range (e.g. because it has already been tested beforehand).

Decompression is performed with DecompressGR (Algorithm 7). Decompression can
return a failure (denoted ⊥) if the input is invalid. On success, the resulting integer
sequence is returned, as well as the actual encoded length (in bits); it is up to the caller to
verify that subsequent bits (e.g. padding), if any, have the expected value.

3.3.6 Public Key Encoding

A HAWK public key consists of four polynomials: q00, q01, q10 and q11. As explained in
Section 3.1.1 we only need to encode q00 and q01 in the public key. Moreover, q00 is self
adjoint, so only its first n/2 coefficients must be serialized. The EncodePublic function
(Algorithm 8) returns the encoded format for a public key.

All coefficients of q00 are lower than 2high00 , except the first coefficient, q00[0], which
may be larger, and is thus treated specially by being first scaled down by a few bits; its
low bits are then appended to the encoding of q00, followed by up to 7 extra bits (of value
0) to ensure that the encoding of q01 starts on a byte boundary. Padding bits (also of
value 0) are finally placed after q01 so that the total encoded size matches the expected
value. The key pair generation process should ensure that the encoded public key can
indeed fit in the target size. If not, the key should be discarded, and a new one generated.

The corresponding decoding algorithm is DecodePublic (Algorithm 9). It is noteworthy
that DecodePublic enforces that the exact input length should match the public key length

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 19

Algorithm 7 DecompressGR: Golomb–Rice decompression
Require: Bit sequence y, output length k ≡ 0 mod 8, sizes low and high
Ensure: Integers x[0:k] and encoded length j, or ⊥ (failure)

1: if lenbits(y) < k(low + 2) then
2: return ⊥
3: for i = 0 to k − 1 do
4: x[i]← DecodeInt(y[i · low + k : (i + 1) · low + k])
5: j ← k(low + 1)
6: for i = 0 to k − 1 do
7: z ← −1
8: repeat
9: z ← z + 1

10: if j ≥ lenbits(y) or z ≥ 2high−low then
11: return ⊥
12: t← y[j]
13: j ← j + 1
14: until t = 1
15: x[i]← x[i] + z · 2low

16: for i = 0 to k − 1 do
17: x[i]← x[i]− y[i](2x[i] + 1) ▷ Application of the sign bit.
18: return (x, j)

Algorithm 8 EncodePublic: Public key encoding
Require: Public polynomials q00 and q01
Ensure: Encoded public key, or ⊥ on error

1: if q00[0] < −215 or q00[0] ≥ 215 then
2: return ⊥
3: v ← 16− high00
4: q′00 ← q00
5: q′00[0]← ⌊q00[0]/2v⌋
6: y00 ← CompressGR(q′00[0 : n/2], low00, high00) ▷ Only n/2 coefficients.
7: if y00 = ⊥ then
8: return ⊥
9: y00 ← y00 ∥ EncodeInt(q00[0] mod 2v, v)

10: while lenbits(y00) ̸≡ 0 mod 8 do
11: y00 ← y00 ∥ 0 ▷ Padding to the next byte boundary.
12: y01 ← CompressGR(q01, low01, high01) ▷ All n coefficients are encoded.
13: if y01 = ⊥ then
14: return ⊥
15: y ← y00 ∥ y01
16: if lenbits(y) > publenbits then
17: return ⊥
18: while lenbits(y) < publenbits do
19: y ← y ∥ 0 ▷ Padding to publenbits bits.
20: return y

20 HAWK

publenbits, as defined in Table 4, and all padding bits (both between q00 and q01, and after
q01) should be zero. A given public key has a single valid encoding, and none other shall
be accepted by DecodePublic.

Algorithm 9 DecodePublic: Public key decoding
Ensure: Encoded public key y
Require: Public polynomials q00 and q01, or ⊥ on error.

1: if lenbits(y) ̸= publenbits then
2: return ⊥
3: v ← 16− high00
4: r00 ← DecompressGR(y, n/2, low00, high00)
5: if r00 = ⊥ then
6: return ⊥
7: (q00, j)← r00
8: if lenbits(y) < j + v then
9: return ⊥

10: q00[0]← 2vq00[0] + DecodeInt(y[j : j + v])
11: j ← j + v
12: while j ̸≡ 0 mod 8 do
13: if j ≥ lenbits(y) or y[j] ̸= 0 then
14: return ⊥
15: j ← j + 1
16: q00[n/2]← 0
17: for i = n/2 + 1 to n− 1 do
18: q00[i]← −q00[n− i]
19: r01 ← DecompressGR(y[j : lenbits(y)], n, low01, high01)
20: if r01 = ⊥ then
21: return ⊥
22: (q01, j′)← r01
23: j ← j + j′

24: while j < lenbits(y) do
25: if y[j] ̸= 0 then
26: return ⊥
27: j ← j + 1
28: return (q00, q01)

3.3.7 Signature Encoding

A HAWK signature consists of a salt value (salt) and a polynomial s1. These two elements
are encoded and concatenated in the function EncodeSignature (Algorithm 10) to yield the
signature. Again, zeros are padded to produce a fixed length signature. If the signature
would be bigger than the fixed length, encoding fails. However, the failure is resolved in
signing by restarting the signing process, which is a randomised process. The parameters
for HAWK have been chosen so that such failures are rare, see Section 3.5.

The corresponding decoding algorithm is DecodeSignature (Algorithm 11). Similarly
to public keys, decoding enforces a signature to be of size siglenbits from Table 4 and all
padding bits at the end should be 0.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 21

Algorithm 10 EncodeSignature: Signature encoding
Require: Salt salt and signature polynomial s1
Ensure: Encoded signature, or ⊥ on error

1: y ← CompressGR(s1, lows1, highs1)
2: if y = ⊥ or lenbits(y) > siglenbits − saltlenbits then
3: return ⊥
4: while lenbits(y) < siglenbits − saltlenbits do
5: y ← y ∥ 0
6: return salt ∥ y

Algorithm 11 DecodeSignature: Signature decoding
Require: Encoded signature y
Ensure: Salt salt and polynomial s1, or ⊥ on error.

1: if lenbits(y) ̸= siglenbits then
2: return ⊥
3: salt← y[0 : saltlenbits]
4: r ← DecompressGR(y[saltlenbits : lenbits(y)], n, lows1, highs1)
5: if r = ⊥ then
6: return ⊥
7: (s1, j)← r
8: j ← j + saltlenbits
9: while j < lenbits(y) do

10: if y[j] ̸= 0 then
11: return ⊥
12: j ← j + 1
13: return (salt, s1)

22 HAWK

3.4 Key Pair Generation
The HAWK key pair generation process consists of trying random candidates for two
polynomials (f, g) with a given distribution, then for each suitable candidate, solving the
NTRU equation fG− gF = 1. If an appropriate solution is found, and the resulting public
key can be encoded within the size defined in the HAWK parameters, then that key pair is
kept; otherwise, the candidate (f, g) is discarded, and the process loops.

The polynomials f and g are sampled from a centred binomial distribution using
pseudorandom bits obtained from a SHAKE256x4 instance initialised over a random seed
(kgseed). This process is implemented by the function Regeneratefg (Algorithm 12). For a
given seed value, the function is deterministic and the output (f, g) is fully specified, so
kgseed is sufficient for the private key storage.

Algorithm 12 Regeneratefg: Regenerate (f, g)
Require: Key generation seed kgseed
Ensure: Polynomials (f, g)

1: b← n/64 ▷ b = 4, 8 or 16, depending on n.
2: y ← SHAKE256x4(kgseed)[0 : 2bn] ▷ b bits for each coefficient of f and g.
3: for i = 0 to n− 1 do
4: f [i]←

(∑b−1
j=0 y[ib + j]

)
− b/2 ▷ centred binomial with η = b/2.

5: for i = 0 to n− 1 do
6: g[i]←

(∑b−1
j=0 y[(i + n)b + j]

)
− b/2

7: return (f, g)

The key pair generation process is defined in the function HawkKeyGen (Algorithm 13),
which makes use of the following two helper functions.

• IsInvertible(u, p) returns true if the integer polynomial u is invertible modulo Xn + 1
and modulo the provided prime p (i.e. considering the coefficients of u as elements
in the field Z/pZ), and false otherwise. When p = 2, this simplifies to a parity check:
IsInvertible(u, 2) returns true if and only if

∑n−1
i=0 u[i] ≡ 1 (mod 2). In HawkKeyGen,

this function is also used for two specific 31-bit moduli amenable to efficient imple-
mentations using the NTT.

• NTRUSolve(f, g, q), for polynomials (f, g) and integer q, return polynomials (F, G)
such that fG − gF = q, and (F, G) have somewhat small coefficients. A solution
does not necessarily exist, and when solutions do exist NTRUSolve may fail to find
one, in which case the function returns ⊥. Note that NTRUSolve may succeed, but
(F, G) may not be short enough, in which case HawkKeyGen also restarts. In [PP19],
the algorithms TowerSolverR and TowerSolverI are presented, which can both be used
to implement NTRUSolve.

Implementation strategies for these helper functions are discussed in more detail in
Section 4.1.

In summary, a HAWK private key describes four secret integer polynomials f , g, F and
G (taken modulo Xn + 1). The vector (f, g) is of small norm and satisfies

∥(f, g)∥∞ ≤ n/128, and ∥(f, g)∥2 > 2nσ2
krsec. (30)

Then, NTRUSolve comes up with (F, G) such that

∥(F, G)∥∞ ≤ 127, and fG− gF = 1. (31)

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 23

Algorithm 13 HawkKeyGen: HAWK key pair generation
Require: Cryptographically secure source of random bits
Ensure: New key pair (priv, pub)

1: kgseed← Rnd(kgseedlenbits) ▷ kgseedlenbits is defined in Table 4.
2: (f, g)← Regeneratefg(kgseed)
3: if IsInvertible(f, 2) ̸= true or IsInvertible(g, 2) ̸= true then
4: restart
5: if ∥(f, g)∥2 ≤ 2nσ2

krsec then
6: restart
7: q00 ← ff⋆ + gg⋆

8: (p1, p2)← (2147473409, 2147389441)
9: if IsInvertible(q00, p1) ̸= true or IsInvertible(q00, p2) ̸= true then

10: restart
11: if (1/q00)[0] ≥ β0 then ▷ Inverse over Q[X]/(Xn + 1).
12: restart
13: r ← NTRUSolve(f, g, 1)
14: if r = ⊥ then
15: restart
16: (F, G)← r
17: if ∥(F, G)∥∞ > 127 then
18: restart
19: q01 ← Ff⋆ + Gg⋆

20: q11 ← FF ⋆ + GG⋆

21: if |q11[i]| ≥ 2high11 for any i > 0 then
22: restart
23: pub← EncodePublic(q00, q01)
24: if pub = ⊥ then
25: restart
26: hpub← SHAKE256(pub) ▷ hpublenbits is defined in Table 4.
27: priv← EncodePrivate(kgseed, F mod 2, G mod 2, hpub)
28: return (priv, pub)

24 HAWK

A HAWK public key describes the four elements q00, q01, q10 and q11 that make up Q.
The key generation HawkKeyGen ensures that

−215 ≤ q00[0] < +215, (32)
−2high00 < q00[i] < +2high00 for i > 0, (33)
−2high01 < q01[i] < +2high01 for all i, (34)
−2high11 < q11[i] < +2high11 for i > 0. (35)

3.5 Signature Generation
As specified in Section 3.1.2, generating a signature requires to sample from a discrete
Gaussian with support 2Z or 2Z + 1. First, we detail the discrete Gaussian sampler used
in signature generation. Then, we explain all the steps done in signature generation.

3.5.1 Discrete Gaussian Sampling

Signature generation nominally entails sampling a vector x from a discrete Gaussian
distribution over the lattice coset 2Z2n + t (with the coefficients of t taking values 0 or 1),
centred on zero and with width 2σsign.

Recall the discrete Gaussian distribution given in (4). For any b ∈ {0, 1} and z ∈ R,
let Pb(z) denote the probability that |X| ≥ z when X ∼ D2Z+b,2σsign . From P0 and P1, we
then define two tables of integers, indexed by an integer k ∈ Z≥0, that use an up-scaling
by a factor 278:

T0[k] = ⌊278 · P0(2 + 2k)⌋, (36)
T1[k] = ⌊278 · P1(3 + 2k)⌋. (37)

These integers are provided in hexadecimal format in Table 5.
Using tables T0 and T1, we define the function SamplerSign (Algorithm 14) which, given

an initial seeding input seed (a sequence of bits) and a centre vector t (whose coefficients
are 0 or 1), samples a vector x from a distribution that approximates D2Z2n+t,2σsign . We
discuss the conditions we require on this approximate distribution more in Section 6.7.
Here x is considered to be a sequence of 2n integers.

The following notes apply to Algorithm 14:
• SHAKE256x4 is used to produce pseudorandom 64-bit words. Since each sampled

value consumes 80 bits, five words are needed for every four output values. A total
of 5n/2 words (160n bits) is thus needed for the 2n output values.

• SHAKE256x4 runs four SHAKE256 instances in parallel. The indexing used above
ensures that each output value uses bits from only one of these four instances,
so that the SHAKE256 instances may be evaluated sequentially on RAM-starved
architectures. The j index is really a designator of the relevant SHAKE256 instance
within SHAKE256x4. The first SHAKE256 instance (j = 0) produces words used
for output values 0, 1, 2, 3, then 16, 17, 18, 19, and so on; the second SHAKE256
instance (j = 1) produces words used for output values 4, 5, 6, 7, then 20, 21, 22,
23, and so on; the third SHAKE256 instance (j = 2) produces words used for output
values 8, 9, 10, 11, then 24, 25, 26, 27, and so on; and the fourth SHAKE256 instance
(j = 3) produces words used for output values 12, 13, 14, 15, then 28, 29, 30, 31, and
so on.

• For each group of five successive words q0 to q4 produced by a single SHAKE256
instance, we can sample four values. Each value needs a 78-bit integer z and a sign
bit. Words q0 to q3 contribute the low 63 bits of each z, and the sign bits; word q4
contains the high 15 bits of each z. Four of the bits of q4 are discarded.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 25

Table 5: Cumulative distribution tables for sampling used in signature generation.
Name T0 T1

HAWK-256 0x26B871FBD58485D45050 0x13459408A4B181C718B1
0x07C054114F1DC2FA7AC9 0x027D614569CC54722DC9
0x00A242F74ADDA0B5AE61 0x0020951C5CDCBAFF49A3
0x0005252E2152AB5D758B 0x0000A3460C30AC398322
0x00000FDE62196C1718FC 0x000001355A8330C44097
0x000000127325DDF8CEBA 0x00000000DC8DE401FD12
0x0000000008100822C548 0x00000000003B0FFB28F0
0x00000000000152A6E9AE 0x00000000000005EFCD99
0x0000000000000014DA4A 0x00000000000000003953
0x0000000000000000007B 0x00000000000000000000

HAWK-512 0x2C058C27920A04F8F267 0x1AFCBC689D9213449DC9
0x0E9A1C4FF17C204AA058 0x06EBFB908C81FCE3524F
0x02DBDE63263BE0098FFD 0x01064EBEFD8FF4F07378
0x005156AEDFB0876A3BD8 0x0015C628BC6B23887196
0x0005061E21D588CC61CC 0x0000FF769211F07B326F
0x00002BA568D92EEC18E7 0x00000668F461693DFF8F
0x000000CF0F8687D3B009 0x0000001670DB65964485
0x0000000216A0C344EB45 0x000000002AB6E11C2552
0x0000000002EDF0B98A84 0x00000000002C253C7E81
0x0000000000023AF3B2E7 0x00000000000018C14ABF
0x00000000000000EBCC6A 0x0000000000000007876E
0x000000000000000034CF 0x0000000000000000013D
0x00000000000000000006 0x00000000000000000000

HAWK-1024 0x2C583AAA2EB76504E560 0x1B7F01AE2B17728DF2DE
0x0F1D70E1C03E49BB683E 0x07506A00B82C69624C93
0x031955CDA662EF2D1C48 0x01252685DB30348656A4
0x005E31E874B355421BB7 0x001A430192770E205503
0x000657C0676C029895A7 0x00015353BD4091AA96DB
0x00003D4D67696E51F820 0x000009915A53D8667BEE
0x0000014A1A8A93F20738 0x00000026670030160D5F
0x00000003DAF47E8DFB21 0x00000000557CD1C5F797
0x0000000006634617B3FF 0x00000000006965E15B13
0x000000000005DBEFB646 0x00000000000047E9AB38
0x00000000000002F93038 0x000000000000001B2445
0x0000000000000000D5A7 0x000000000000000005AA
0x00000000000000000021 0x00000000000000000000

26 HAWK

Algorithm 14 SamplerSign: Gaussian sampling in HAWK signature generation
Require: Seeding input seed, centre vector t
Ensure: x

1: y ← SHAKE256x4(s)[0 : 5n/2] ▷ 5n/2 64-bit words = 160n bits
2: for j = 0 to 3 do
3: for i = 0 to n/8− 1 do
4: for k = 0 to 3 do
5: r ← 16i + 4j + k
6: a← y[j + 4(5i + k)]
7: b← ⌊y[j + 4(5i + 4)]/216k⌋ mod 215

8: c← (a mod 263) + 263b
9: (v0, v1)← (0, 0)

10: z ← 0
11: while T0[z] ̸= 0 or T1[z] ̸= 0 do
12: if c < T0[z] then
13: v0 ← v0 + 1
14: if c < T1[z] then
15: v1 ← v1 + 1
16: z ← z + 1
17: if t[r] = 0 then
18: v ← 2v0
19: else
20: v ← 2v1 + 1
21: if a ≥ 263 then
22: v ← −v

23: x[r]← v

24: return d

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 27

• The actual sampling is done by counting how many elements of T0 and T1 are
strictly greater than z; thus, lower z values yield larger outputs. Ultimately, only
one of the two results v0 and v1 is retained, depending on the corresponding bit in t;
Algorithm 14 still uses both tables because that corresponds to what a constant-time
implementation of HAWK should do: the t vector is secret, and thus the memory
access pattern should not depend on whether t[r] is 0 or 1. Similarly, all table
elements should be used each time (no early abort), and the application of the sign
bit (conditional replacement of v with −v) should be done in a constant-time way.

• The number of iterations of the inner “while” loop depends on the scheme parameters.
The T0 and T1 tables formally contain an infinite number of entries, but they only
contain zeros beyond a certain index that depends on the scheme parameters. As
seen in Table 5, with the currently defined parameter sets, only up to at most 13
iterations are needed.

3.5.2 Generating signatures

Using SamplerSign, we can now define the HawkSign function (Algorithm 15), which
generates a HAWK signature on an arbitrary message. HawkSign also uses the sym-break
function, defined as follows, for a given polynomial w:

• If there exists an index i such that w[i] > 0, and w[j] = 0 for all j < i, then
sym-break(w) = true.

• Otherwise, sym-break(w) = false.

In other words, sym-break(w) is true only if w is not zero, and its first non-zero coefficient
is positive.

Algorithm 15 HawkSign: HAWK signature generation
Require: Message m, private key priv, secure random source
Ensure: Signature sig

1: (kgseed, F mod 2, G mod 2, hpub)← DecodePrivate(priv)
2: (f, g)← Regeneratefg(kgseed)
3: M ← SHAKE256(m ∥ hpub)[0 : 512] ▷ M has size 64 bytes.
4: a← 0
5: loop
6: salt← SHAKE256(M ∥ kgseed ∥ EncodeInt(a, 32) ∥ Rnd(saltlenbits))[0 : saltlenbits]
7: (h0, h1)← SHAKE256(M ∥ salt)[0 : 2n]
8: (t0, t1)← ((h0f + h1F) mod 2, (h0g + h1G) mod 2)
9: seed←M ∥ kgseed ∥ EncodeInt(a + 1, 32) ∥ Rnd(320)

10: (x0, x1)← SamplerSign(seed, (t0, t1))
11: a← a + 2
12: if ∥(x0, x1)∥2 > 8nσ2

verify then
13: continue loop
14: w1 ← fx1 − gx0
15: if sym-break(w1) = false then
16: w1 ← −w1
17: s1 ← (h1 − w1)/2
18: sig← EncodeSignature(salt, s1)
19: if sig ̸= ⊥ then
20: return sig

The following notes apply to HawkSign:

28 HAWK

• The message (m) is used once, at the start of a SHAKE256 instance, and is followed
by the public key hash. This allows streamed processing, i.e. data can be signed as
it flows without buffering the entire message. Moreover, this initial hashing process
is independent of the signing key or any randomly chosen value.

• The signature salt (salt) and the sampling seed (seed) are both obtained from a
SHAKE256 hash, computed over the concatenation of the input message (m), the
private key seed (kgseed), an attempt counter (a or a + 1), and some random bits.
This is a derandomisation mechanism that provides extra protection in case the
random source happens not to be cryptographically strong in a practical situation; in
the extreme case where Rnd is fully non-random and outputs only zeros, then this step
degrades to deterministic signatures, but it is still safe. It is nonetheless recommended
to inject true random bits, or at least some varying data (even if not unpredictable),
since that improves resistance to some active physical attacks (fault attacks). Also
note that a cryptographically strong random source, indistinguishable from true
randomness, is still a strict requirement for key pair generation (HawkKeyGen).

• Conversely to the derandomisation process explained above, it is possible to generate
safe and interoperable signatures by generating the salt and the random bits used in
SamplerSign directly from a cryptographically strong random source, thus bypassing
all use of SHAKE256 on private data. Such alternative implementations can be useful
on constrained devices for which SHAKE256 is expensive but a cheaper safe RNG is
available, e.g. CTR-DRBG built over a hardware AES-256 implementation.

• Since h0 and h1 are binary polynomials, only F mod 2 and G mod 2 are needed, not
the full F and G.

• The computation of sym-break does not need to be performed in constant-time since
w1 is a public value, and for any sampled (x0, x1), the opposite (−x0,−x1) (that
would lead to the opposite result for sym-break) could have been obtained with the
same probability.

• We note that if w1 is the zero polynomial, then both sym-break(w1) and sym-break(−w1)
are false. In this case, a valid signature may fail to pass verification, see Algorithm 20.
However, for w1 = 0 to be generated in Algorithm 15 it must be that h1 = 0,
since w1 ∈ 2R2

n + h1. We therefore assume this event happens with probability
approximately 2−n and disregard it.

• The whole process is organised as a loop because it can fail for three possible reasons:

– The sampled (x0, x1) has a larger than acceptable ℓ2 norm; this may happen
with probability less than 2−17 for HAWK-512 and less than 2−121 for HAWK-
1024 [DPPvW22b, Sec. 5.1].

– One of the coefficients of s1 is lower than −2highs1 or greater than 2highs1 − 1,
making it incompatible with CompressGR. This is extremely rare.

– The signature encoding (EncodeSignature) yields an output larger than the size
defined in the scheme parameters. This is uncommon, because the target sizes
have been set using the average encoded signature size (before padding) plus at
least 4.5 times the standard deviation; however, it does happen in practice, on
an occasional basis.

Most signature attempts still succeed the first time. Retries do not have a significant
impact on average performance.
In particular, over ten million HAWK-512 signatures there were two that failed because
(x0, x1) was too long, and fifty-one that failed because the signature encoding was too

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 29

large. Similarly, for HAWK-1024 there were no failures due to length and twenty-five
due to the signature encoding being too large. The second failure condition was
never observed. Hence the approximate restart probabilities for HAWK-512 and
HAWK-1024 are 5.3× 10−6 and 2.5× 10−6 respectively, and these are dominated by
encoding failures.

• The polynomial s1 is only half of the (formal) “uncompressed signature”, which is
a vector s = (s0, s1). The value of s0 is reconstructed by the signature verification
algorithm. That reconstruction can fail, with a very low probability; private keys
are generated with an explicit test against the bound β0 in Algorithm Algorithm 13
precisely so that this failure probability is as low as possible. For HAWK-512 and
HAWK-1024, the failure probability is indeed negligible, i.e. it is estimated as less than
2−105 and 2−315 respectively [DPPvW22b]. For HAWK-256, the failure probability
may be up to about 2−40, which is considered tolerable for a “challenge” scheme.

3.6 Signature Verification
The formal (“uncompressed”) signature is a vector s = (s0, s1). However, the encoded
signature contains only s1 and the signature generation process did not even compute s0.
Thus, the first step of the verification process is to rebuild s0 using (27):

s0 =
⌈

h0

2 + q01

q00

(
h1

2 − s1

)⌋
,

where the rounding is performed coefficientwise.
We define here an implementation of the above equation that uses only integer computa-

tions (interpreted as scaled-up versions of approximations of the actual real coefficients). In
many usage contexts of signatures, other implementation strategies may be used, e.g. lever-
aging floating-point hardware.3 However, there are some contexts, in particular related to
consensus protocols, where it is important that all implementations fully agree on whether
a given signature is valid for a given message and public key pair; in that case, applications
should use only implementations that can be proven to return the same output status as
the one specified here.

For the specification of the FFT, InvFFT and RebuildS0 functions (Algorithms 16 to 18),
we use the following conventions:

• Polynomial coefficients, in both normal and FFT representations, are stored as
32-bit signed integers, using two’s complement for negative values, and truncation
for oversize values. The truncation of an integer z to a signed 32-bit value is
mathematically equivalent to ((z +231) mod 232)−231. For valid keys and signatures,
no such truncation happens (values do not overflow), but invalid, maliciously crafted
key pairs may induce such a condition.

• The same rules apply to temporary variables with a lowercase name (such as “x1,re”).

• Temporary variables with an uppercase name, such as “Tre”, use 64-bit signed integers.

In the fixed-point notation, a real value x is represented by an integer, which is a
rounded version of x multiplied by a power of two. The scaling factor varies depending on
the context (so the “fixed-point” terminology is slightly abusive), but not depending on
the actual values, thus avoiding all the complexity of floating-point numbers. In practical
implementations, all operations are on integers with a few extra shift operations that use
shift counts independent of the data.

3Since signature verification uses only public data, the tricky question of whether a given floating-point
hardware or software implementation is constant-time does not arise.

30 HAWK

Let δ = e2iπ/2048. We then define the following table of (precomputed) complex
numbers, whose real and imaginary parts are both integers, for index k = 0 to 1023:

∆[k] =
⌈
231ℜ(δrev10(k))

⌋
+ i
⌈
231ℑ(δrev10(k))

⌋
The first two entries (∆[0] and ∆[1]) are not actually used. All other entries have real and
imaginary integers that are strictly lower than 231 in absolute value, so these can fit in a
signed 32-bit representation.

For a polynomial a with real coefficients, its FFT representation â is the set of values
a(ζ) for all complex roots ζ of Xn + 1. Since a is real, a(ζ̄) is the conjugate of a(ζ) when
ζ̄ is the complex conjugate of ζ, and ζ̄ is another root of Xn + 1. Thus, it is sufficient
to keep n/2 complex values in â. The FFT function (Algorithm 16) computes â from a;
in the â representation, the real and imaginary parts of a(ζ) are stored at indices v and
v + n/2, for some integer v < n/2.

Algorithm 16 FFT: Conversion to FFT representation (fixed point)
Require: Polynomial a (fixed-point)
Ensure: FFT representation â (fixed-point)

1: â← a
2: t← n/2
3: m← 2
4: while m < n do
5: v0 ← 0
6: for u = 0 to m/2− 1 do
7: εre ← ℜ(∆[u + m])
8: εim ← ℑ(∆[u + m])
9: for v = v0 to v0 + t/2− 1 do

10: x1,re ← â[v]
11: x1,im ← â[v + n/2]
12: x2,re ← â[v + t/2]
13: x2,im ← â[v + t/2 + n/2]
14: Tre ← x2,reεre − x2,imεim
15: Tim ← x2,reεim + x2,imεre
16: â[v]← ⌊(231x1,re + Tre)/232⌋
17: â[v + n/2]← ⌊(231x1,im + Tim)/232⌋
18: â[v + t/2]← ⌊(231x1,re − Tre)/232⌋
19: â[v + t/2 + n/2]← ⌊(231x1,im − Tim)/232⌋
20: v0 ← v0 + t

21: t← t/2
22: m← 2m
23: return â

In Algorithm 16, the operations on integers have been expressed in a detailed way,
i.e. real and imaginary parts of the complex values are treated as separate variables. The
divisions by 232 are rounded toward minus infinity, which is what an “arithmetic right
shift” operator computes in most programming languages.4

The inverse FFT is given by the function InvFFT (Algorithm 17). This algorithm uses
the inverses of the roots of Xn + 1, as stored in the ∆ table. Since all these roots lie on
the unit circle, their inverse is obtained by complex conjugation, which is easily obtained
by negating the imaginary part.

4This is guaranteed in Java, C#, Go, Rust. . . C and C++ are, formally, an exception, since right-

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 31

Algorithm 17 InvFFT: Conversion back from FFT representation (fixed point)
Require: FFT representation â (fixed-point)
Ensure: Polynomial a (fixed-point)

1: a← â
2: t← 2
3: m← n/2
4: while m > 1 do
5: v0 ← 0
6: for u = 0 to m/2− 1 do
7: ηre ← ℜ(∆[u + m])
8: ηim ← −ℑ(∆[u + m])
9: for v = v0 to v0 + t/2− 1 do

10: x1,re ← a[v]
11: x1,im ← a[v + n/2]
12: x2,re ← a[v + t/2]
13: x2,im ← a[v + t/2 + n/2]
14: t1,re ← x1,re + x2,re
15: t1,im ← x1,im + x2,im
16: t2,re ← x1,re − x2,re
17: t2,im ← x1,im − x2,im
18: a[v]← ⌊t1,re/2⌋
19: a[v + n/2]← ⌊t1,im/2⌋
20: a[v + t/2]← ⌊(t2,reηre − t2,imηim)/232⌋
21: a[v + t/2 + n/2]← ⌊(t2,reηim + t2,imηre)/232⌋
22: v0 ← v0 + t

23: t← 2t
24: m← m/2
25: return a

32 HAWK

Using FFT and InvFFT, we can define RebuildS0 (Algorithm 18) which, given the public
key polynomials q00 and q01, and the polynomials w1 = h1 − 2s1 and h0, recomputes the
corresponding s0 polynomial, and returns w0 = h0 − 2s0. Algorithm 18 uses the function
sgn, which returns the “sign bit” of an integer: sgn(z) = 1 if z < 0, or 0 if z ≥ 0.

Algorithm 18 RebuildS0: Rebuild s0 from public key and signature
Require: Public polynomials q00 and q01, w1, h0
Ensure: w0, or ⊥ on error

1: cw1 ← 229−(1+highs1)

2: cq00 ← 229−high00

3: cq01 ← 229−high01

4: cs0 ← (2 · cw1 · cq01)/(n · cq00)
5: ŵ1 ← FFT(cw1 · w1)
6: z00 ← q00
7: if z00[0] < 0 then
8: return ⊥
9: z00[0]← 0

10: q̂00 ← FFT(cq00 · z00)
11: q̂01 ← FFT(cq01 · q01)
12: α← (2 · cq00 · q00[0])/n
13: for u = 0 to n/2− 1 do
14: Xre ← q̂01[u]ŵ1[u]− q̂01[u + n/2]ŵ1[u + n/2]
15: Xim ← q̂01[u]ŵ1[u + n/2] + q̂01[u + n/2]ŵ1[u]
16: (Xre, zre)← (|Xre|, sgn(Xre))
17: (Xim, zim)← (|Xim|, sgn(Xim))
18: v ← α + q̂00[u]
19: if v ≤ 0 or v ≥ 230 or Xre ≥ 232v or Xim ≥ 232v then
20: return ⊥
21: yre ← ⌊Xre/v⌋
22: yim ← ⌊Xim/v⌋
23: q̂01[u]← yre − 2 · zre · yre
24: q̂01[u + n/2]← yim − 2 · zim · yim

25: t← InvFFT(q̂01)
26: for u = 0 to n− 1 do
27: v ← cs0 · h0[u] + t[u]
28: z ← ⌊(v + cs0)/(2 · cs0)⌋ ▷ z is the rebuilt coefficient s0[u].
29: if z < −2highs0 or z ≥ 2highs0 then
30: return ⊥
31: w0[u]← h0[u]− 2 · z
32: return w0

In Algorithm 18, the local variables Xre and Xim should use a 64-bit integer type, but
all other intermediate values will fit in signed 32-bit variables. Moreover, all divisions in
this algorithm are by powers of two and can therefore be implemented with bit shifts,
except for Lines 21 and 22, which require “true” divisions. The tests on the operands
ensure that:

• the dividend (Xre or Xim) is non-negative and less than 262,

• the divisor (v) is positive and less than 230,

shifting a signed negative value yields an implementation-defined result; however, in practice, all software
platforms use two’s complement for negative values, and the right-shift operator extends the sign bit.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 33

• the quotient is strictly lower than 232.

The division is therefore well-defined, and can use a hardware division opcode that takes a
64-bit unsigned dividend and a 32-bit unsigned divisor (such as the one-operand variant of
div on 32-bit x86) without triggering a CPU exception through a division by zero or an
overflow.

The verification algorithm entails computing ∥w∥2
Q. We can write the following

equation:
n∥w∥2

Q = Tr(q00w0w⋆
0 + q10w0w⋆

1 + q01w⋆
0w1 + q11w1w⋆

1)

Using the known relations between the elements of Q, this can be rewritten as:

d = w1/q00 (38)
e = w0 + q01d (39)

n∥w∥2
Q = Tr(q00ee⋆ + dw⋆

1) (40)

The final value of ∥w∥2
Q is a non-negative integer; we can thus perform its computation

modulo sufficiently many small distinct primes, and rebuild the integer result with the CRT.
It can be shown that thanks to the bounds on q00, q01 and q11 (enforced during key gener-
ation with HawkKeyGen) and on s0 and s1 (enforced by RebuildS0 and DecodeSignature,
respectively), the result cannot be larger than 15 · 258. It is therefore sufficient to perform
the computation modulo the two primes p1 = 2147473409 and p2 = 2147389441, since
p1p2 > 15 · 258. In fact, since the target norm is upper bounded in valid signatures by a
value which is much lower than both p1 and p2, we can avoid the CRT computation: for
a valid signature, the computation of n∥w∥2

Q must yield the same integer result (when
normalised in the 0 to p− 1 range) for both moduli. For p = p1 or p = p2, the following
properties hold:

• p is prime and Z/pZ (the integers modulo p) is a finite field.

• p− 1 is a multiple of 2048, allowing use of the number theoretic transform (NTT) to
speed up multiplications and divisions of polynomials modulo Xn + 1 and modulo p.

• p is slightly lower than 231: multiplication modulo p can be implemented with a
Montgomery multiplication, implementable with 32-bit integers in an efficient and
portable way.

• q00 was verified during key pair generation, to be invertible modulo Xn + 1 and
modulo p. Therefore, the division by q00 in NTT representation is well-defined and
always works (no division by zero).

When p is prime and p−1 is a multiple of 2n, the polynomial Xn+1 splits completely over
Z/pZ, and the NTT representation of a polynomial u is the sequence of values u(µ) mod p
for all n roots µ of Xn + 1 modulo p. In NTT representation, additions, subtractions,
multiplications and divisions of polynomials are simply performed by applying the operation
coefficientwise. Conversion to and from NTT representation can be done in O(n log n)
operations (see Section 4.1). Two other useful properties of the NTT are noteworthy:

• The NTT representation of u⋆ contains the same values as the NTT representation
of u, in a different order. If the NTT uses the classic “bit-reversal” order, then
the coefficients of the NTT representation of u⋆ simply use the reverse order of the
coefficients of the NTT representation of u.

• For a polynomial u, we have that Tr(u) mod p is congruent to the sum of the
coefficients of the NTT representation of u, modulo p.

34 HAWK

We suppose that we have a function called NTT, such that NTT(u, p) is the NTT
representation of u modulo p; we also use a function NTTadj such that NTTadj(NTT(u, p)) =
NTT(u⋆, p). Using these functions, PolyQnorm (Algorithm 19), given q00, q01, w0, w1, and
a modulus p, returns n∥w∥2

Q mod p. It does not matter, for PolyQnorm, which ordering
convention NTT uses, as long as NTTadj uses the same convention.

Algorithm 19 PolyQnorm: polynomial Q-norm evaluation (modular)
Require: Polynomials q00, q01, w0, w1; modulus p
Ensure: n∥w∥2

Q mod p
1: q̄00 ← NTT(q00, p)
2: q̄01 ← NTT(q01, p)
3: w̄0 ← NTT(w0, p)
4: w̄1 ← NTT(w1, p)
5: d̄← w̄1/q̄00
6: ē← w̄0 + d̄ · q̄01
7: c̄← q̄00 · ē · NTTadj(ē) + d̄ · NTTadj(w̄1)
8: r ← 0
9: for i = 0 to n− 1 do

10: r ← r + c̄[i]
11: return r mod p

In Algorithm 19, all operations performed on NTT representations are computed
coefficientwise and modulo p. The final result (r) is also computed modulo p normalised
into the 0 to p− 1 range.

We can now express the HawkVerify function (Algorithm 20), which performs the
signature verification and returns true for a valid (message, public key, signature) triplet,
or false otherwise.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 35

Algorithm 20 HawkVerify: HAWK signature verification
Require: Message m, public key pub, signature sig
Ensure: true if valid, false otherwise

1: r ← DecodeSignature(sig)
2: if r = ⊥ then
3: return false
4: (salt, s1)← r
5: r ← DecodePublic(pub)
6: if r = ⊥ then
7: return false
8: (q00, q01)← r
9: hpub← SHAKE256(pub)

10: M ← SHAKE256(m ∥ hpub)
11: (h0, h1)← SHAKE256(M ∥ salt)[0 : 2n]
12: w1 ← h1 − 2 · s1
13: if sym-break(w1) = false then
14: return false
15: w0 ← RebuildS0(q00, q01, w1, h0)
16: if w0 = ⊥ then
17: return false
18: r1 ← PolyQnorm(q00, q01, w0, w1, p1)
19: r2 ← PolyQnorm(q00, q01, w0, w1, p2)
20: if r1 ̸= r2 or r1 ̸≡ 0 mod n then
21: return false
22: r1 ← r1/n
23: if r1 > 8n · σ2

verify then
24: return false
25: return true

36 HAWK

4 Implementations
In this section, we give recommendations for implementors to end up with a fast imple-
mentation that uses little RAM. In comparison to Section 3, these recommendations do
not need to be followed, in constract to e.g. the fixed-point FFT specified in Section 3.6.

In Section 4.1, we highlight some techniques that were used in the provided imple-
mentations. These allow for fast implementations. Timings, and the method to obtain
them, are provided in Section 4.2. There, we also present two trade-offs between time and
memory that are possible in signing and verification.

4.1 Software Implementation Techniques
4.1.1 NTT

The NTT transform is a useful tool for performing fast computations over polynomials
defined modulo Xn + 1. The HAWK signature verification was specified in Section 3.6
using that transform, but without prescribing a specific method of computing the NTT
or its inverse, nor a specific order of NTT coefficients. Algorithms 21 and 22 show the
classic “bit-reversal” methods for computing the NTT and its inverse, respectively. These
algorithms expect the following:

• All computations are done in the finite field Z/pZ of integers modulo p for a prime
p ≥ 3 such that p ≡ 1 mod 2n.

• Let γ be a primitive 2n-th root of unity modulo p. The tables Γ and Γ−1 contain
some precomputed powers of γ in a specific order:

Γ[i] ≡ γrevlogn(i) mod p,

Γ−1[i] ≡ γ−revlogn(i) mod p,

where the bit-reversal function (cf. Section 3.1) is over logn = log2(n) bits.

Algorithm 21 NTT: Conversion to NTT representation
Require: Polynomial u (modulo Xn + 1 and modulo p)
Ensure: NTT representation of u (in place)

1: t← n
2: m← 1
3: while m < n do
4: t← t/2
5: for i = 0 to m− 1 do
6: s← Γ[i + m]
7: for j = 0 to t− 1 do
8: u0 ← u[2ti + j]
9: u1 ← u[2ti + t + j]

10: u[2ti + j]← u0 + su1
11: u[2ti + t + j]← u0 − su1

12: m← 2m
13: return u

There are several possible variants for the implementation of NTT and iNTT; for
instance, the halvings (division by 2) in iNTT may be delayed and performed with a single
pass after completion of the outer loop.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 37

Algorithm 22 iNTT: Inverse NTT transform
Require: NTT representation of polynomial u
Ensure: Plain representation of u

1: t← 1
2: m← m
3: while m < n do
4: m← m/2
5: for i = 0 to m− 1 do
6: s← Γ−1[i + m]
7: for j = 0 to t− 1 do
8: u0 ← u[2ti + j]
9: u1 ← u[2ti + t + j]

10: u[2ti + j]← (u0 + u1)/2
11: u[2ti + t + j]← s(u0 − u1)/2
12: t← 2t
13: return u

A noteworthy point is that the Γ and Γ−1 tables for degree n are strict prefixes of
the corresponding tables for degree 2n; in other words, a precomputed table for degree
n = 1024 can also be used for computing NTTs with the same prime modulus for lower
degrees (512, 256, . . .). Moreover, Γ−1 can be recomputed from Γ using the fact that
γn = −1, thus γ−i = −γn−i.

4.1.2 Key Pair Generation

The HAWK key pair generation (Algorithm 13) consists of several steps, some of which are
amenable to various implementation techniques. In the HAWK reference and optimised
implementations, we use the techniques and implementation from [Por23]. The following
points are noteworthy:

• The polynomial q00 = ff⋆ + gg⋆ is computed modulo the prime integer p1 =
2147473409. Since the coefficients of f and g are at most 8 in absolute value, it is
guaranteed that the coefficients of q00 cannot exceed 128n, which is lower than p1/2.
Similar considerations apply for the computation of q01 and q11.

• Invertibility of q00 modulo p1 is tested by verifying that none of the coefficients of
NTT(q00) are zero. The same test is applied modulo p2.

• The verification that (1/q00)[0] ≥ β0 is performed by computing the 1/q00 polynomial
(over the rationals, not modulo a prime p) with a fixed-point FFT, which is also used
within NTRUSolve. Note that this check is meant to ensure that the probability of
algorithm RebuildS0 failing to recompute the s0 part of a signature during verification
is negligible. As such, there are no great precision requirements on this computation,
and an approximate fixed-point FFT is good enough.

• NTRUSolve uses the approach of [PP19]. The field norm is applied repeatedly to halve
the degrees of the involved polynomial until solving the NTRU equation becomes
a simple extended GCD computation over big integers. The full degree solution is
then obtained by unwinding the halvings, and applying Babai’s round-off algorithm
at each step. Computations with the NTT modulo small 31-bit primes pi, are used
extensively. The Babai rounding uses a FFT with fixed-point 64-bit numbers.

Algorithm HawkKeyGen enforces the check of invertibility modulo the specific primes
p1 and p2 so that signature verification may use the same moduli; proper interoperability

38 HAWK

of HAWK implementations requires that key pair generators and signature verifiers use the
same primes. However, nothing forces the key pair generation to use 31-bit moduli for
its internal computations. For instance, hardware platforms with large 64-bit multipliers
might get performance improvements with 63-bit moduli.

4.1.3 Signature Generation

After obtaining the initial hash h0, h1 from the message, public key and a salt, the
polynomials (t0, t1) are computed by multiplying with B on the left. These computations
can be performed modulo 2, since we are ultimately interested only in the least significant
bit of the resulting polynomial coefficients. This is why only F (mod 2) and G (mod 2) are
stored in the private key, not the full F and G. It is possible to perform the computations of
t0 and t1 modulo a large enough prime that supports the NTT. However, it appears to be
more efficient, especially relatively to RAM usage, to avoid the NTT and directly use binary
polynomials, i.e. polynomials with coefficients in Z/2Z. A product of binary polynomials
of degree less than n can be performed with three products of binary polynomials of degree
less than n/2, and a few polynomial additions (which are just bitwise XORs, since we work
here in (Z/2Z)[X]), using the classic Karatsuba–Ofman method [KO62]. For instance, if u
and v are binary polynomials of degree less than n, then we can break each in its low and
high halves:

u0 = u[0:n/2],
u1 = u[n/2:n],
v0 = v[0:n/2],
v1 = v[n/2:n],

and we can then compute the product uv as:

uv = (u0 + Xn/2u1)(v0 + Xn/2v1)
≡ (u0v0) + Xn(u1v1) + Xn/2((u0 + u1)(v0 + v1) + u0v0 + u1v1) (mod 2).

Applying this method recursively, the polynomial product boils down to products of
small polynomials. Some software platforms provide a “carryless multiplication” opcode
(e.g. pclmul on x86) which can perform these products; otherwise, integer multiplications
can be used (separating the data bits with enough zeros to prevent carries from propagating).
Once the product of two binary polynomials has been computed (with a result over 2n− 1
bits), reduction modulo Xn + 1 is a simpler matter of bitwise XORing the high half into
the low half.

The SamplerSign function uses secret data and thus should be implemented in a way
that does not leak information about that data through side channels. Algorithm 14
shows a design that can at least be constant-time, i.e. avoiding leaks leveraging timing
measurements:

• The input random 78-bit value c is compared to the elements of the T0 and T1 tables;
for each table, the count of table elements greater than c is computed. Although
only one of the two counts is ultimately retained, both are systematically computed
to avoid leaking the corresponding bit of t.

• Similarly, all table elements are always used, even though the values in each table are
monotonically decreasing. An early exit strategy must not be used if the signature
generation time is potentially observable by outsiders.

• Each comparison between c and a value T0[z] is done by taking the sign bit of
c − T0[z]. Values consist of 78 bits, which exceeds the 64-bit maximum size that

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 39

can be expected from portable C systems; the split of c into a 63-bit low part and a
15-bit high part is meant to support manual carry propagation in a portable way.

As was pointed out in Section 3.5, the SHAKE256x4 output words are used in such an
order that every value is being sampled from the output of a single SHAKE256 instances
among the four instances that SHAKE256x4 formally runs in parallel. This allows RAM-
constrained implementations to run the four SHAKE256 instances sequentially, reusing the
same space for the internal SHAKE256 state (of size about 200 bytes), while platforms with
SIMD opcodes can run two or four SHAKE256 instances truly in parallel, and apply the
T0 and T1 tables also in parallel. On x86 CPUs with AVX2 opcodes, the four SHAKE256
instances in SHAKE256x4 can indeed run in parallel.

Once the (d0, d1) vector has been sampled, the HawkSign algorithm needs to compute
w = fd1 − gd0, potentially negate w, then produce s1 = (h1 − w)/2 (the division by 2
is exact, so the coefficients of s1 are integers). For these computations, the NTT can be
used with a small prime modulus; the elements of s1 are normally distributed around zero
with a standard deviation less than 400, thus a modulus p ≥ 400× 32 covers all values up
to 16 times the standard deviation, and the probability of a value of s1 being incorrectly
computed when working modulo such a p is less than 2−189, hence negligible. For software
implementations, moduli p = 12289 and p = 18433 are especially appropriate, since they
are compatible with the use of the NTT for all specified HAWK parameter sets, and they fit
on 15 bits, which is convenient for both small microcontrollers, and for powerful CPUs with
SIMD opcodes. The reference and optimised implementations of HAWK use p = 18433;
integers modulo p use Montgomery representation with R = 232 i.e. an integer value x is
represented by 232x mod p, normalised to the 1 to p range (this specific representation
allows one to avoid the conditional subtraction of the modulus that usually follows the
Montgomery reduction of a product). Other moduli are possible; if multiplication of small
integers is expensive on a given platform, then p = 65537 is a good choice, since it allows
a multiplicationless reduction.

4.1.4 Signature Verification

Signature verification starts with reconstruction of the s0 polynomial (Algorithm RebuildS0),
followed by a computation of ∥h−2s∥2

Q. The first step involves computing an approximation
of a polynomial over the rationals, and rounding its coefficients to the nearest integers.
Such a rounding may exercise threshold conditions: if the value to round is very close
to, for instance, 1/2, then two different implementations using distinct approximation
methods may round such a value differently (one rounding the value to 0, the other
rounding the value to 1) and come up with distinct signature verification outcomes (the
signature would be deemed valid by the implementation that rounded “correctly”, and
invalid by the other implementation). The key pair generation enforces a maximum bound
on (1/q00)[0] precisely so that properly generated signatures cause signature verifiers to
rebuild s0 reliably and correctly, because s0 has coefficients far enough from the threshold
values. Nevertheless, it is conceptually feasible for a malicious signer to craft a key pair
and a signature value that would be arbitrarily close to such thresholds. This can be an
issue in some usage contexts, in particular distributed consensus protocols that require all
parties to agree on the validity of a given signature for a given message and public key.

In order to avoid such issues, implementations of RebuildS0 should follow the steps of
RebuildS0 (Algorithm 18) exactly. A fixed point approximation of values is used, with 32-bit
integers and floored rounding of divisions. This corresponds to the simplest implementation
on typical software platforms (using two’s complement for negative integers, and arithmetic
shifts for division by powers of two).

The second part of HawkVerify, i.e. the computation of ∥h − 2s∥2
Q, is specified in

Algorithms 19 and 20 with polynomials modulo two specific 31-bit primes p1 and p2. Other

40 HAWK

moduli pi are usable, provided that q00 is invertible modulo Xn + 1 and pi; key pair
generation ensures that this is true for the specified p1 and p2, but any implementation
using another modulus must account for the possibility that one of the modular divisions
in PolyQnorm fails because the divisor turns out to be zero. On 64-bit platforms, one may
get an improved performance by using a single modulus larger than 15 · 258. An alternative
implementation strategy for this step is to use floating-point operations: since the squared
norm is an integer, an approximate computation is good enough.

4.2 Benchmarks
We measured the speed of the HAWK implementations on two platforms: a recent x86
CPU (using the optimised AVX2 implementation), and an embedded ARM Cortex M4
CPU (using the reference implementation):

• x86 system: Intel Core i5-8259U (“Coffee Lake”) running at 2.3 GHz, with Linux
(Ubuntu 22.04) in 64-bit mode (x86_64). Frequency scaling (“TurboBoost”) is
disabled. A single CPU core is used, on an otherwise idle machine. Compiler is
Clang-14.0.0, with optimisation flags “-O2”. AVX2 support is enabled on all functions
that use AVX2 intrinsics through function attributes.

• ARM Cortex M4 system: STM32F4 “discovery” board (STM32F407VG-DISC1),
running at 24 MHz; memory access times, for both RAM and ROM (Flash), have
no extra wait states (local caches are not used as such frequencies). Compiler is
GCC-10.3.1, with optimisation flags “-O2 -mthumb -mcpu=cortex-m4”. The Keccak-
f permutation which is at the core of SHAKE256 is implemented in assembly. Apart
from this, the plain C reference code is used.

The measured performance figures are shown on Table 6.

Speed Measurements. All timings are averages expressed in clock cycles. The code is
isochronous in the sense that execution time variations cannot be correlated with secret
information; however, execution time still varies, in particular in key pair generation (for
restarts when a candidate (f, g) pair is unsuitable), but also for all public key and signature
encoding and decoding routines.

RAM Usage Estimation. The shown RAM usage is an estimate for embedded systems
such as the ARM Cortex M4. Each of the key pair generation, signature generation and
signature verification functions expects the caller to provide a temporary buffer in which
most of the computations happen, and output values are also returned in that buffer. The
stack space is used only for a small number of index values and pointers, as well as up to
two concurrently running SHAKE256 contexts (208 bytes each), and an additional buffer
for h1 (in signature generation, up to 128 bytes) or (h0, h1) (in signature verification, up
to 256 bytes). The implementation does not use recursion. Since the code is written
in C, the C compiler may allocate space for its own purposes in mostly uncontrollable
ways, and tends to be somewhat generous in that respect. Moreover, for improved API
clarity and flexibility, some extra call layers have been added, which increases the amount
of such compiler allocated stack space. To account for stack usage in a hypothetical
streamlined implementation, we add 1024 bytes to the size of the temporary buffer. On
x86, stack usage is greater (mostly because of the use of four parallel SHAKE256 instances
in SHAKE256x4, and also because all registers are twice larger) but that matters less in
practice, since systems using 64-bit CPUs have large amounts of available RAM, and the
whole computation still fits entirely within the L1 cache.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 41

Table 6: HAWK performance on x86 (“Coffee Lake”) and ARM Cortex M4. Speed is
expressed in clock cycles, and RAM usage in bytes.

HAWK-256 HAWK-512 HAWK-1024

Targeted security Challenge NIST-1 NIST-5

Speed on x86 “Coffee Lake” with AVX2 (clock cycles)

Key pair generation 1877122 8432840 43660958
Signature generation 54361 85372 180816
Signature generation (fast) 25979 43686 85381
Signature verification 73260 148224 302861
Signature verification (fast) 61125 124286 255312

Speed on ARM Cortex M4 (clock cycles)

Key pair generation 18717711 52316870 225658496
Signature generation 1585967 2801495 6179673
Signature generation (fast) 581590 1161174 2494513
Signature verification 702905 1418539 3006983
Signature verification (fast) 607064 1230466 2609859

RAM usage (bytes)

Key pair generation 7680 14336 27648
Signature generation 2560 4096 7168
Signature generation (fast) 3152 5272 9512
Signature verification 3584 6144 11264
Signature verification (fast) 4928 8768 16512

42 HAWK

Fast Signature Generation. Speed and RAM usage for “normal” signature generation
correspond to the HAWK scheme exactly as specified in this document. The “fast” signature
generation is modified in two aspects:

• In the normal signature generation, first the (encoded) private key is decoded, by the
function DecodePrivate, into kgseed, F mod 2, G mod 2 and hpub, and then f, g are
generated from kgseed in the function Regeneratefg. The fast signature generation,
however, takes f, g, F mod 2, G mod 2 and hpub as input, removing the CPU cost
of DecodePrivate and Regeneratefg from the signing process. This does increase the
RAM requirement for storing the decoded private key.

• The random source used for SamplerSign is no longer SHAKE256x4, but a fast RNG
(based on AES-128 on x86, or on ChaCha8 on the Cortex M4).

As was noted in Section 3.5, using an alternative RNG for signature generation does not
break interoperability; in fact, outsiders cannot detect whether SHAKE256x4 or another
RNG was used for producing any given signature. The measurements provided here are
meant only as an illustration of the fact that SHAKE256 related costs are an important
part of the runtime cost of signature generation (up to 2/3 of the overall cost on the ARM
Cortex M4); thus, substantial performance improvements can be expected if the platform
provides a hardware accelerated SHAKE256 implementation, or if the RNG is switched to
another secure but faster primitive, e.g. AES-256 or TurboSHAKE [BDH+23].

Fast Signature Verification. The cost of signature verification depends on the amount of
available RAM. When only a minimal amount of temporary space is provided, the public
key and signature values are decoded several times from their respective Golomb–Rice
representations. When more space is available, such decoding is done only once, and the
decoded polynomials s1, q00 and q01 are stored in that extra space, thereby avoiding the
cost of repeated decompression. It is easy for an implementation to opportunistically
choose the compact or fast modes, depending on the size of the caller provided temporary
buffer. Table 6 illustrates this trade-off: the fast signature verification is about 15% faster
(depending on degree and architecture), but uses up to 50% more RAM.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 43

5 Cryptanalysis
For the cryptanalytic ideas behind the modelling of HAWK we refer back to [DvW22,
DPPvW22b]. In this chapter we explain, reproduce and extend the practical cryptanalysis
from [DPPvW22b] and verify some additional changes, such as the switch to the centred
binomial distribution for key generation. The cryptanalysis of HAWK is separated into
two sections. In Section 5.1 we consider the problem of directly recovering the secret key
from the public key; this is an instance of breaking the module search lattice isomorphism
problem and we approach it using lattice reduction. We examine a threshold phenomenon
on the lengths of vectors found during lattice reduction that determines a lower bound
on the lengths of f and g required for security. In Section 5.2 we consider strong forgery
attacks via mapping them to lattice reduction tasks. We end with tables reporting the
estimated BKZ blocksizes required for the above two cryptanalytic tasks, also taking into
account the dimensions for free techniques of [Duc18].

In each section we provide a model for the attack strategy, and for Section 5.1 we provide
experimental evidence. For functions relating to our model, see https://github.com/
hawk-sign/aux/blob/main/code/find_params.sage. The experiments are conducted
over two types of instances. When n is a power of two, we are able to generate HAWK public
keys as detailed in Section 3.4, minus the conditions that determine whether encoding will
be successful or not, as these are not defined except for HAWK-{256, 512, 1024}. When n is
not a power of two, we generate instances following the method of [DvW22, Alg. 1], i.e. the
NTRU structure is lacking. Since the original specification of HAWK in [DPPvW22b] we
have altered the key generation procedure to use a centred binomial distribution rather
than a discrete Gaussian, as our practical cryptanalysis suggested that only the lengths
of f and g were important. Therefore the distribution internal to [DvW22, Alg. 1] in
our experiments will be the centred binomial distribution by default, with an explicitly
indicated fallback to the discrete Gaussian distribution when we need more control over
the width of the distribution. Finally, our experiments treat the rank two module basis
given by B in HAWK as the rank 2n integer basis given by rot(B); equivalently, we treat
the module gram matrix Q as rot(Q).

5.1 Secret key recovery
We first note that any unimodular matrix V ∈ GL2n(Z) such that VtV = Q allows one to
sign as if one has the secret key B; run an unstructured version of the signature algorithm
with V in place of B. This is equivalent to finding a U = V−1 ∈ GL2n(Z), such that
UtQU = I2n, i.e. reducing any basis corresponding to Q to an orthonormal basis. In
particular, we consider finding a single vector of length one as a success.

Recovering unusual short vectors. We first study the BKZ blocksize required to recover
a vector of length one, as a function of the dimension of the instance, in experiments where
the centred binomial distribution has a ‘large’ parameter η, i.e. when the initial basis is
badly reduced. This is an instance of the shortest vectors problem, where we have (up to
sign) d = 2n unusually short vectors of length 1. When performing lattice reduction on
Q, at a certain point the length of the shortest vector in the basis drops suddenly from
what lattice reduction heuristics would suggest, from say σkrsec(d) ·

√
d, to length one. This

threshold phenomenon is due to a projection of a unit vector being found in a terminal
block during BKZ reduction. Asymptotically, the required blocksize that triggers this
behaviour is given by β = d/2 + o(d), when σkrsec = Θ(

√
d) [ADPS16]. For a more precise

concrete estimate of β and σkrsec, we use the estimator from [DDGR20]: it relies on the
BKZ simulator of Chen and Nguyen [CN11], a probabilistic model for the projected length
of unusual short vectors, and accounts for the number of such short vectors. In Fig. 1 we

https://github.com/hawk-sign/aux/blob/main/code/find_params.sage
https://github.com/hawk-sign/aux/blob/main/code/find_params.sage

44 HAWK

show experimental evidence that the blocksize estimates are closely followed in practice,
both for the unstructured and for the structured cases.

60 80 100 120 140 160 180 200 220 240 2600

20

40

60

80

100

Lattice dimension d

Su
cc

es
sfu

lb
lo

ck
siz

e
β

Experimental average
Experimental average (structured)
Prediction of [DDGR20]
β = d/2− 36.7

We ran progressive BKZ (one tour per blocksize) over Zd using an input form generated with
η = 20 and report the average successful β that recovered a length one vector over 20 instances.
We used the BKZ simulator and probabilistic model of [DDGR20], accounting for the d target

solutions.

Figure 1: Blocksize required to recover a shortest vector via lattice reduction as a function
of dimension d.

A threshold phenomenon on basis lengths. To keep our public key Q small we want to
choose the centred binomial parameter η as small as possible. However, if η is too small
then Q is already well reduced, which may make it easier to recover the full orthonormal
basis. We consider, for some fixed dimensions, the key recovery experiment by running
BKZ on public keys Q of different reduction quality, to observe how the hardness of this
lattice reduction task behaves as a function of η. To make these experiments more granular
we considered public keys where the sampling of f and g is performed using a discrete
Gaussian distribution for smaller increments of standard deviation σ̃kgen, as in [DPPvW22b,
Fig. 4]. We clarify that here we report the standard deviations σ̃kgen, which significantly
differ from the small widths σkgen of the discrete Gaussian distributions. Concretely, this
is because σkgen ≥ ηε(Zd) only for large ε in these experiments, see Definition 1. This
approach also allows us to observe whether in these experiments there is a difference in
practical hardness between the centred binomial distribution and the discrete Gaussian
distribution of equal standard deviation. The results are shown in Fig. 2 and show a certain
threshold behaviour, where at some point, fixing the dimension, the required blocksize
stops increasing and stays the same for growing σ̃kgen. Based on this cryptanalysis we
want to pick our public key around this threshold value of σ̃kgen to minimise its size while
maintaining the maximal hardness of the problem. We argue that this maximum hardness,
even though the actual threshold might be lower, is attained when σ̃kgen > σkrsec. During
the usual progressive lattice reduction attack vectors of this length are by definition found
before recovering a unit vector. So even if such short vectors are given away one would
still require the last BKZ tour(s), or large SVP call in the last block, to actually recover a
unit vector. We therefore also plot our simulation of σkrsec on Fig. 2, noting that for the
smaller dimensions these simulations deviate from our experimentally observed values of
σkrsec. From about successful blocksize 40 onwards, or d = 170, the estimates for σkrsec
grows slowly with dimension, matching the experimentally observed growth.

To verify that the maximum hardness is achieved at σkrsec we compare the successful

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 45

blocksize, for several fixed dimensions, when σ̃kgen is large and when σ̃kgen = σkrsec(d) is on
the estimated threshold. In particular, for these experiments, we fix the length of the secret
basis vectors we sample in the key generation from below by σkrsec

√
d, and resample them

otherwise. For the structured case this is comparable to the condition ∥(f, g)∥ ≥ σkrsec
√

d
that is used in HAWK. Fig. 3 shows that the successful blocksizes are comparable in both
cases, with an almost identical average, and only slightly bigger negative deviations in the
threshold case.

We thus conclude that if ∥(f, g)∥ ≥ σkrsec
√

d then to recover the secret key an adversary
must run BKZ with the average blocksize β suggested in Section 5.1, specifically Fig. 1.

Prior occurrences of the same phenomenon. This threshold phenomenon is not specific
to our cryptanalysis of this lattice isomorphism problem, but is merely a reminiscence of a
well know phenomenon in the pure geometric formalism of LIP. It is implicitly present in
the cryptanalysis of SIS and LWE, i.e. lattice reduction problems in q-ary lattices. For
example, when attacking LWE, one usually considers “forgetting” some LWE samples to
trade dimension for volume and thereby optimise the attack parameters. A geometric
interpretation given in [DDGR20] is that the attacker is implicitly projecting the problem
against a q-vector, and this is advantageous whenever q is smaller than the first basis
vector length achieved by BKZ with a certain blocksize on a random lattice of the same
volume and dimension. That is: the public description of the lattice freely gives mildly
short vectors that are helpful. A similar exploit was considered in the cryptanalysis
of DILITHIUM [LDK+22], though it was ineffective in their context. It was recently
successfully applied [DEP23] against a SIS type problem with low modulus q, breaking a
proposed variation of FALCON [ETWY22].

Our parametrisation strategy is precisely meant to avoid this pitfall. The short vectors
given to the adversary are no shorter than what he would find during a sufficiently strong
lattice reduction to attack the scheme.

A note on tours in progressive BKZ. Throughout our experiments we use one tour per
blocksize in our progressive BKZ. It is possible to construct more optimal approaches,
see [AWHT16]. However, the approach of running some number τ ≥ 1 tours for each
blocksize, while offering improvements for small dimensions d, quickly becomes a worse
strategy. For example, by simulation [DDGR20], at the HAWK-256 challenge parameters
with τ ∈ {1, 2, 4, 8}, the estimated required blocksize decreases by one for each doubling of τ .
This is an unfavourable trade; twice as many tours required for a BKZ run that costs more
than half as much. More generally, one may vary the tours in key_recovery_beta_ssec.

5.2 Strong forgery
A strong forgery is when an adversary is able to produce a valid signature on a message
for which it does not have any signatures. In particular, given a point h ∈ Z2n and
Q one must find an s ∈ Z2n such that ∥h − 2s∥2

Q ≤ 8nσ2
verify. This is equivalent to

being given a point t = B · h and B and having to find some y ∈ Z2n such that
∥t− 2y∥ ≤ 2

√
2nσverify. This is an approximate CVP instance over a rotation of 2Z2n. In

particular if we measure the approximation factor γ with respect to the normalised volume
we have ∥t− 2y∥ ≤ γ · vol(2Z2n)1/(2n) = 2γ for γ =

√
2nσverify. We can therefore appeal to

the nearest colattice algorithm [EK20]. In particular [EK20, Thm. 4.3] implies a heuristic
algorithm that allows one to solve the above approximate CVP with approximation factor
γ = gh(β)(n−1)/(β−1) where gh(β) is the expected first minimum of a random lattice with
unit volume. This is achieved by the application of the DBKZ algorithm [MW16] with
blocksize β and an exact CVP oracle for rank β lattices. In particular, one picks β minimal
such that gh(β)(n−1)/(β−1) ≤

√
2nσverify.

46 HAWK

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

10

20

30

40

50

60

70

Standard deviation σ̃kgen

Su
cc

es
sfu

lb
lo

ck
siz

e
β

d = 200
d = 190
d = 180
d = 170
d = 160
d = 150
d = 140
d = 130
d = 120
d = 110
η = 1
σkrsec

We ran progressive BKZ (one tour per blocksize) over Zd using an input form generated with
various σkgen and report the average successful β that recovered a length one vector over 40

instances. To allow us to vary σkgen gradually we sampled from a discrete Gaussian distribution,
except for the centered binomial case (η = 1) at σkgen =

√
1/2. Note that the range of σkgen

includes values “below smoothing”, for which the actual standard deviation σ̃kgen can be
significantly lower than the Gaussian width parameter σkgen.

Figure 2: Blocksize required to recover a shortest vector via lattice reduction as a function
of the standard deviation σ̃kgen.

Table 7: Estimated BKZ blocksizes for cryptanalytic tasks using the BKZ simulator
of [DDGR20].

βkey βkey (d4f) βforge βforge (d4f)
HAWK-256 211 187 211 187
HAWK-512 452 412 452 412
HAWK-1024 940 873 1009 938

Crucial to this argument is that DBKZ with blocksize β heuristically finds vectors of
length gh(β)(n−1)/(β−1) · vol(2Z2n)1/(2n). When we use simulation for this approach we
estimate the blocksize required in progressive BKZ with one tour per blocksize that finds
vectors of this length. We report this β below and disregard the cost of the exact CVP
oracle in rank β lattices.

5.3 Estimated blocksizes
In Table 7 we report the “raw” estimated blocksizes that simulation via [DDGR20] suggests
are necessary for the cryptanalytic tasks of Sections 5.1 and 5.2, as well as the respective
blocksizes once the dimensions for free technique has been taken into account [Duc18]. See
functions key_recovery_beta_ssec and approx_SVP_beta.

We assume a single tour at blocksize β costs at least n calls to an SVP oracle of rank
β for HAWK-n. From https://github.com/jschanck/eprint-2019-1161/blob/main/
data/cost-estimate-list_decoding-classical.csv we have an estimated gate count
for realising the SVP oracle of rank β via sieving [AGPS20], specifically the fastest known
classical sieve [BDGL16]. Taking the lowest blocksizes in the rows associated to HAWK-512

https://github.com/jschanck/eprint-2019-1161/blob/main/data/cost-estimate-list_decoding-classical.csv
https://github.com/jschanck/eprint-2019-1161/blob/main/data/cost-estimate-list_decoding-classical.csv

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 47

100 120 140 160 180 200 220

−10

−5

0

5

10

15

Lattice dimension d

Su
cc

es
sfu

lb
lo

ck
siz

e
∆

β
Experimental average σkgen =

√
10

Experiments σkgen =
√

10
Experimental average σkgen = σkrsec

Experiments σkgen = σkrsec

We ran progressive BKZ (one tour per blocksize) over Zd using an input form generated with
σkgen =

√
10 or with σkgen = σkrsec and report the (average) successful β that recovered a length

one vector over 20 instances. In order to sample at σkrsec we sampled from a discrete Gaussian
distribution instead of the binomial one. We normalised the blocksize with respect to the average

successful blocksize when σkgen =
√

10.

Figure 3: Blocksize required to recover a shortest vector via lattice reduction as a function
of dimension d for σkgen =

√
10 and σkgen = σkrsec.

Table 8: Estimated BKZ blocksizes for cryptanalytic tasks using the GSA-interesect
method of [AGVW17] for βkey and the nearest colattice approach [EK20] for βforge.

βkey βkey (d4f) βforge βforge (d4f)
HAWK-256 220 195 205 181
HAWK-512 456 416 438 399
HAWK-1024 933 866 974 905

and HAWK-1024, and lowering them to the nearest multiple of eight to appeal to the
concrete values from [AGPS20], we have estimated gate counts of 2141 and 2278. Applying
a factor of n to this cost gives us 2150 and 2288. This still ignores other factors, such
as the progressivity factor C2 ≈ 25 discussed in [SAB+22, Sec. 5.2.1], and the hidden
overhead of the Becker–Ducas–Gama–Laarhoven sieves of a similar order of magnitude
studied in [Duc22].

The above analysis only considers a pure BKZ attack, while a typical optimisation
consists of applying a final SVP call in a slightly larger blocksize on the terminating block
(a distinction sometime referred to as the uSVP versus BDD attack), to amortise the
cost of 2n− β many SVP calls inside BKZ. This approach however consumes even more
memory (which is already above 2100 bits for HAWK-512), for a limited gain on time (at
most nC, and significantly less in practice).

While we expect simulation to give more accurate blocksizes, for reference we also
provide in Table 8 the estimated blocksizes not using simulation, similar to the analysis
of FALCON [PFH+22, Sec. 2.5.1]. However, in our version of this analysis we do not
simplify some exponents, see https://github.com/hawk-sign/aux/blob/main/code/
falcon.sage for a comparison of FALCON-{512, 1024} and HAWK-{512, 1024} in various
analyses. We also do not apply the overconservative “double” dimensions for free in key
recovery, as explained in [DPPvW22b, App. D]. If we apply the same conservative analysis
as for Table 7 above to HAWK-512 and HAWK-1024 we calculate gate costs of 2145 and
2286.

https://github.com/hawk-sign/aux/blob/main/code/falcon.sage
https://github.com/hawk-sign/aux/blob/main/code/falcon.sage

48 HAWK

We might also consider the methodologies of [PFH+22, Sec. 2.5.1] and [LDK+22,
Tab. 4] in deciding what is an acceptable blocksize, after taking dimensions for free into
account, to achieve a particular security level. For example, FALCON considers β = 374
and β = 869 to be sufficient to achieve NIST-I and NIST-V, whereas DILITHIUM considers
β = 394 and β = 818 sufficient for NIST-II and NIST-V. We have arrived at our blocksizes
via different analyses; here we are solely considering the conversion from blocksize to
security level.

We see that the minimum blocksizes, after dimensions for free have been applied,
required to perform key recovery or forge across Tables 7 and 8 are 399 and 866 for
HAWK-512 and HAWK-1024 respectively. While the lattice dimensions are slightly larger
in DILITHIUM, by no more than a factor of two, all of our estimated blocksizes are at least
as large for equal (or smaller) security levels. In the comparison to FALCON we see that
HAWK-512 has higher blocksizes for all cryptanalytic tasks, and βkey (d4f) for HAWK-1024
is three smaller than for FALCON-1024. Given the margin expressed for the FALCON-1024
parameters in [PFH+22, Sec. 2.5.1] this small decrease is acceptable.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 49

6 Formal Security
In this section we provide formal justification for the security of HAWK. We start in Sec-
tion 6.1 with local preliminaries. Then in Section 6.2 we formally introduce omSVP.
In Sections 6.3 and 6.4 we provide reductions in the (quantum) random oracle model from
HAWK to omSVP. We then introduce the search module lattice isomorphism problem,
which is the problem upon which direct key recovery relies. Finally, we discuss these
problems with respect to the parameters of HAWK and our design decisions.

6.1 Preliminaries
For a statement P we let JP K equal 1 if P is true, and 0 otherwise. We now define the
smoothing parameter [MR04] of the integer lattice with respect to width parameter σ;
recall (3).

Definition 1. For ε > 0 the smoothing parameter ηε(Zn) is the minimal σ such that
ρ1/2πσ(Zn \ {0}) ≤ ε.

Note ηε is often defined with respect to a width parameter s =
√

2πσ and therefore
its value in Definition 1 is a factor of

√
2π smaller than when defined with respect to

s, and that Zn is a self dual lattice. Also, ηε(Zn) is continuous and strictly increasing
as ε decreases, with limε→0(ηε(Zn)) =∞. The smoothing parameter ηε(Z2n) implicitly
determines the Rényi divergence of the two distributions we consider in Lemma 1 and also
determines the upper bounds on the probabilities in Lemma 2. In each case a smaller ε is
better for our reduction, but requires a larger σ by the discussion above.

We fix the section s : Rn/2Rn → Rn of the natural surjection Rn → Rn/2Rn that has
s(a + 2Rn) = a0 + a1X + · · · an−1Xn−1 with (a0, . . . , an−1) ∈ {0, 1}n. We thus consider
reduction mod 2 in Rn as a map Rn → Rn/2Rn → Rn via s. In order to abstract away
the technical details of sym-break we consider the function ⟨ · ⟩ : R2

n → R2
n defined by

w 7→ ⟨w⟩ =
{
−w if sym-break(w) = 1,

w otherwise,

where sym-break is as specified in Section 3.5.2. It is convenient to think of ⟨w⟩ as a
representation of the equivalence class {w,−w}, with the representation being unique if
w ̸∈ Rn × {0}. Indeed, what will be relevant is that

⟨w⟩ = ⟨−w⟩ ∈ {w,−w} ∀w ̸∈ Rn × {0} , (41)

while ⟨w⟩ = w for w ∈ Rn × {0}.

Definition 2. Given σ > 0 and Q = B⋆B for some B ∈ GL2(Rn), let

ρQ,σ : R2
n → R, x 7→ exp(−∥x∥2

Q/2σ2).

Note here that for Q = B⋆B, we have ρQ,σ (x) = ρσ (B · x) by (22).

Definition 3. Let B ∈ GL2(Rn) and Q = B⋆B. For every σ > 0 and h ∈ (Rn/2Rn)2 ⊂ R2
n

we consider the following Q dependent distributions.

• DQ,σ, the discrete Gaussian distribution over R2
n under ∥ · ∥Q given by

DQ,σ : R2
n → R, x 7→ ρQ,σ(x)/

∑
y∈R2

n

ρQ,σ(y).

50 HAWK

• D̃Q,σ [h], the discrete Gaussian distribution over h + 2R2
n ⊂ R2

n under ∥ · ∥Q given
by

D̃Q,σ [h] : h + 2R2
n → R, x 7→ ρQ,σ(x)/

∑
y∈h+2R2

n

ρQ,σ(y).

• D̃Q,σ, the distribution implied by sampling a uniform h← (Rn/2Rn)2 and returning
a sample from D̃Q,σ [h].

Given B we may sample the above distributions by sampling according to DI2(Kn),σ,
in the coset defined by t = Bh if required, and multiplying by B−1 as in HAWK signing,
e.g. Algorithm 2. Note that for every h ∈ (Rn/2Rn)2

∀ w ∈ Supp
(

D̃Q,σ [h]
)

= h + 2R2
n, w mod 2 = h. (42)

We call the maximum probability of any element in the support of a distribution the
guessing probability of the distribution. As a direct consequence of [DPPvW22b, Lemma 3],
the guessing probability of w mod 2 for w← DQ,2σ with σ ≥ ηε(Z2n) has the following
upper bound

guess(w mod 2) = max
h◦∈(Rn/2Rn)2

Pr[w mod 2 = h◦] ≤ 2−2n · 1 + ε

1− ε
. (43)

We will also make use of the Rényi divergence between D̃Q,2σ and DQ,2σ, which we
compute in the following lemma.
Lemma 1. Let σ > 0, Q = B⋆B for some B ∈ GL2(Rn) and a ∈ (1,∞) be an order.
Furthermore, denote by

α = ρ2σ(Z)
2ρσ(Z) , and β = ρ2σ(Z)

2ρσ

(
Z + 1

2
) ,

then

Ra

(
D̃Q,2σ ∥DQ,2σ

)
=
(

αa−1 + βa−1

2

) 2n
a−1

.

Proof. Since each w ∈ R2
n lies in 2R2

n + h for exactly one h ∈ (Rn/2Rn)2 we have

D̃Q,2σ(w) = 2−2nρQ,2σ(w)/ρQ,2σ(2R2
n + h).

Similarly we have
DQ,2σ(w) = ρQ,2σ(w)/ρQ,2σ(R2

n).
Hence, by definition of the Rényi divergence,

Ra(D̃Q,2σ ∥ DQ,2σ)a−1

=
∑

h∈(Rn/2Rn)2

∑
w∈2R2

n+h

D̃Q,2σ(w)a
/DQ,2σ(w)a−1

=
∑

h∈(Rn/2Rn)2

2−2n ·
(

ρQ,2σ(R2
n)

22nρQ,2σ(2R2
n + h)

)a−1 ∑
w∈2R2

n+h

ρQ,2σ(w)
ρQ,2σ(2R2

n + h) .

Note that
∑

w ρQ,2σ(w)/ρQ,2σ(2R2
n + h) = 1, simplifying the equation to

Ra

(
D̃Q,2σ ∥DQ,2σ

)a−1 = 2−2n
∑

h∈(Rn/2Rn)2

(
ρQ,2σ(R2

n)
22nρQ,2σ(2R2

n + h)

)a−1

= 2−2n
∑

h∈(Rn/2Rn)2

(
ρ2σ(R2

n)
22nρ2σ(2R2

n + B · h)

)a−1

,

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 51

where the second equality relies on the factor that B ∈ GL2(Rn) and therefore that BR2
n =

R2
n. We also note that

{
2R2

n + Bh mod 2: h ∈ (Rn/2Rn)2
}

=
{

2R2
n + t : t ∈ (Rn/2Rn)2

}
.

Therefore, we may sum over t ∈ (Rn/2Rn)2. We also here pass to the unstructured setting,
noting that ρ2σ(R2

n) = ρ2σ(2Z2n) and that, since Z2n has an orthogonal basis I2n(Z),
ρ2σ(2Z2n) = ρ2σ(2Z)2n. Similarly, we have ρ2σ(2R2

n+t) = ρ2σ(2Z2n+t) =
∏

i ρ2σ(2Z + ti),
with t ∈ {0, 1}2n after the first equality. Thus,

Ra

(
D̃Q,2σ ∥DQ,2σ

)a−1 = 2−2n
∑

t∈{0,1}2n

(
ρ2σ(Z2n)

22nρ2σ(2Z2n + t)

)a−1

= 2−2n
∑

t∈{0,1}2n

2n−1∏
i=0

(
ρ2σ(Z)

2ρ2σ(2Z + ti)

)a−1
.

By swapping these (finite) sums and products, and considering the contribution of a single
ti, half of which are zero and half of which are one over t ∈ {0, 1}2n for any fixed index i,
we have

Ra

(
D̃Q,2σ ∥DQ,2σ

)a−1 =
2n−1∏
i=0

1
2 ·
[(

ρ2σ(Z)
2ρ2σ(2Z)

)a−1
+
(

ρ2σ(Z)
2ρ2σ(2Z + 1)

)a−1
]

=
[

1
2 ·
((

ρ2σ(Z)
2ρ2σ(2Z)

)a−1
+
(

ρ2σ(Z)
2ρ2σ(2Z + 1)

)a−1
)]2n

As ρ2σ(2Z + b) = ρσ(Z + b/2), one can substitute α and β in the above.

As σ grows the Rényi divergence decreases towards one. When σ is not too big, α and
β in the above lemma can be efficiently numerically computed to any desired precision via
a tailcut.

6.1.1 Roots of Unity

The 2n roots of unity of Rn are denoted by µK and given by {1, X, X2, . . . , X2n−1}. The
following lemma is extracted from the proof of [DPPvW22a, Lem. 10] and a replica (up to
a variable name change) of [FH23, Lem. 1]; see the latter for a detailed proof.

Lemma 2. Let n be a power of 2, ε > 0, σ ≥ ηε(Z2n), and h◦ ∈ (Rn/2Rn)2. Consider
w← DQ,2σ and set h = w mod 2. Then

Pr
[
∃ α ∈ µK \ {±1} : 1

2 (h + αw) ∈ R2
n

]
≤ 2−n · 1 + ε

1− ε
, and (44)

Pr
[
∃ α ∈ µK : 1

2 (h◦ + αw) ∈ R2
n

]
≤ n · 2−2n · 1 + ε

1− ε
. (45)

6.1.2 Adaptive Reprogramming Lemma

The following reprogramming lemma is adapted from [GHHM21, Thm. 1], with the overall
loss slightly improved. Intuitively, it states that, if the location x of a reprogramming of the
random oracle is hard to guess prior to when it is taking place, then such a reprogramming
is hard to notice.

Lemma 3 (Slight modification of [GHHM21, Thm. 1]). Let H : X → Y be a random
oracle, ε > 0 and Ω be a family of distributions on X where every D ∈ Ω has guessing
probability guess(D) = maxx◦ Prx←D [x = x◦] ≤ γ. Define the reprogramming oracle
Reprob for b ∈ {0, 1} that, on input (a suitable representation of) D ∈ Ω, functions as

52 HAWK

Repro0(D)
1 : x← D
2 : y = H(x)
3 : return (x, y)

Repro1(D)
1 : x← D
2 : H(x) = y ← Y
3 : return (x, y)

Suppose AReprob,H for b ∈ {0, 1} makes at most qr queries to the reprogramming oracle
Reprob, and at most qh quantum queries to H before the last reprogramming query. Then,∣∣∣Pr

[
1← ARepro0,H]− Pr

[
1← ARepro1,H] ∣∣∣ ≤ 2qr

√
(qh + qr) · γ.

We refer readers to [FH23, App. A] for a detailed proof, which proves the same statement
up to a change of variable names.

6.1.3 SUF-CMA security

For a signature scheme Π = (Sign, Vf, KGen) we define the game (Q)ROM-SUF-CMAΠ,A
in Fig. 4. For a signature scheme to exhibit strong unforgeability under chosen message at-
tacks no (quantum) probabilistic polynomial time adversary against (Q)ROM-SUF-CMAΠ,A
should win with non negligible probability. The prefix (Q)ROM indicates that the adversary
gets (quantum) access to the random oracle H.

(Q)ROM-SUF-CMAΠ,A(1λ)
1 : LSign ← ∅

2 : (pk, sk)← KGen(1λ)

3 : (m⋆, sig⋆)← AOSign,H(1λ, pk)

4 : return JVfH
pk(m⋆, sig⋆) = 1 ∧ (m⋆, sig⋆) ̸∈ LSignK

OSign(m)
1 : sig← SignH

sk(m)
2 : LSign ← LSign ∪ {(m, sig)}
3 : return sig

Figure 4: The (Q)ROM-SUF-CMA game.

Definition 4 ((Q)ROM-SUF-CMA security). Let Π = (KGen, Sign, Vf) be a signature
scheme. Let t, ε, qs, qh be functions of λ. We say that Π is (t, ε, qs, qh)-(Q)ROM-SUF-CMA
secure, or strongly unforgeable under chosen message attacks in the (quantum) random
oracle model, if for any adversary A running in time at most t, making at most qs queries
to its signing oracle, and making at most qh queries to its random oracle, the probability
AdvSUF-CMA

Π,A (λ) := Pr[(Q)ROM-SUF-CMAΠ,A(1λ) = 1] ≤ ε(λ) for all λ.
In the above definition we have (mostly) dropped the dependence of A and t, ε, qs, qh

on λ. The superscript in AdvSUF-CMA
Π,A (λ) does not read (Q)ROM-SUF-CMA, and instead

only SUF-CMA, for typographical aesthetics. Also, outside of definitions, we drop the
dependence on the security parameter; AdvSUF-CMA

Π,A .

6.2 The one more shortest vector problem
Informally an average case omSVP instance samples a Q from a distribution over some
H>0

r (K) and gives Gaussian samples according to this Q. Here, for a CM-field K and

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 53

SAMPLEac-omSVP,A(1λ)
1 : Lsamples ← {0}

2 : (Q, µK , L, σ)← Init(1λ)

3 : w⋆ ← Asamp(1λ, Q, µK , L, σ)
4 : return Jw⋆ ∈ Rr ∧ ∥w⋆∥Q ≤ L ∧w⋆ ̸∈ LsamplesK

samp
1 : w← DQ,σ

2 : Lsamples ← Lsamples ∪ {αw}α∈µK

3 : return w

Figure 5: The SAMPLE game.

r ∈ Z≥1, we defineH>0
r (K) ⊂ Kr×r as the Q ∈ Kr×r such that Q = Q⋆ and Tr(v⋆Qv) > 0

for all v ∈ Kr \ {0}, i.e. matrices that represent Hermitian positive definite forms. If one
can find some non zero x in the ring of integers R of K that is sufficiently short with
respect to Q, and that is in some sense non trivially new, then one solves the problem. We
show that for certain parameters, if one can forge a signature against HAWK then in the
programmable quantum random oracle model one can solve an instance of this problem.

Definition 5 (Average case omSVP). An average case omSVP instance is the pair
ac-omSVP = (Init, samp). Init returns a form Q sampled from some distribution over
some H>0

r (K), the roots of unity µK for K, a length bound L, and a Gaussian parameter
σ, where r, K, L, σ are functions of λ. Each call to samp returns a sample from DQ,σ.

The adversary in Fig. 5 wins whenever it can use the output of Init and the samples it
receives from samp to return some non trivial new element of Rr that is short enough.

Definition 6 (SAMPLE security). Let ac-omSVP = (Init, samp) be an average case omSVP
instance. Let t, ε, qo be functions of λ. We say that ac-omSVP is (t, ε, qo)-SAMPLE secure,
if for any adversary A running in time at most t, and making at most qo queries to samp,
the probability AdvSAMPLE

ac-omSVP,A(λ) := Pr[SAMPLEac-omSVP,A(1λ) = 1] ≤ ε(λ) for all λ.

6.3 Quantum security of HAWK
Let η, σsign, σverify, and saltlenbits be the parameters as specified in Section 3.2. Let ε be
minimal such that σsign ≥ ηε(Z2n). We write HawkKeyGen for the key generation procedure
of Algorithm 1. It produces a key pair (Q, (B, hpub)) with B ∈ GL2(Rn) and Q = B⋆B.
We first analyse a simplified variant of HAWK with signing Signsk and verification Vfpk as
in Fig. 6. Hence, define

ΠHAWK = (HawkKeyGen, Sign, Vf). (46)

We discuss these simplifications below, and in Section 6.3.3 consider HAWK without
these simplifications, as in Section 2.1.

Sign(B,hpub)(M)
1 : salt← Rnd(saltlenbits)
2 : h = H(M ∥ salt)

3 : w← D̃Q,2σsign [h]

4 : s := 1
2(h + ⟨w⟩) ∈ R2

n

5 : return sig := (salt, s)

VfQ(M, sig)
1 : (salt, s) := sig
2 : h := H(M ∥ salt)
3 : w := 2s− h

4 : check sig ∈ {0, 1}saltlenbits ×R2
n

5 : check w = ⟨w⟩ and w ̸∈ Rn × {0}

6 : check ∥w∥Q ≤ 2σver ·
√

2n

7 : return 1 if all checks pass

Figure 6: Simplified HAWK.

54 HAWK

The description in Fig. 6 matches the specification of HAWK (see Section 2.1 and in
particular Algorithms 2 and 3) up to some small changes.

Several operations look different, but are equivalent. In particular, the sampling of
w in both descriptions coincides, and s := 1

2 (h + ⟨w⟩) captures the sign flip of w when
sym-breakw is false. Finally, whenever the check sym-break(h − 2s) in Algorithm 2 is
unsatisfied, it is because either h − 2s = −w ∈ Rn × {0} and therefore w ∈ Rn × {0}
also, or the first nonzero coefficient of the second component of −w is negative, in which
case ⟨w⟩ = −w ̸= w. Hence the check w = ⟨w⟩ and w ̸∈ Rn × {0} in Vf is equivalent to
checking sym-break(h− 2s) as in Algorithm 2.

We now enumerate the simplifications, where we describe what happens in Section 2.1
but not in Fig. 6. First, in Algorithm 2 signing is restarted whenever w is too long or
when various encoding requirements are not satisfied. Second, a hash M = H(m ∥ hpub) is
computed initially in Algorithm 2. Finally, signatures are compressed in Algorithm 2, and
decompressed in Algorithm 3.

Consider a (Q)ROM-SUF-CMA attacker AOSign,H(pk) against ΠHAWK, which on input
the public key makes at most qh (quantum) queries to the random oracle H and at
most qs queries to the signing oracle OSign, and eventually outputs a message forgery pair
(M⋆, sig⋆) with sig⋆ = (salt⋆, s⋆) ∈ {0, 1}saltlenbits×R2

n. Without loss of generality, we assume
A makes exactly (qs, qh) queries to (OSign, H) respectively.5 The goal is to turn A into an
algorithm B that solves an instance of ac-omSVP, in which Init(1λ) produces σ = 2σsign,
L = 2σver ·

√
2n, µK as in Section 6.1.1, and Q sampled via (Q, sk)← HawkKeyGen. From

here we take it as understood that ac-omSVP = (Init, samp) is as described above.
Theorem 1 (Quantum security of (simplified) ΠHAWK). Let A be an adversary against the
(Q)ROM-SUF-CMA game making at most qs queries to OSign and at most qh quantum
queries to H. Then there exists an adversary B against the SAMPLE game making qo = qs

queries to samp, with running time TIME(B) = TIME(A)+Overhead(qs, qh). This overhead
consists of simulating qh hash queries to H and qs queries to Sim (specified in Fig. 7).
Furthermore, for each a ∈ (1,∞) we have

AdvSUF-CMA
ΠHAWK,A ≤

Ra

(
D̃Q,2σsign ∥DQ,2σsign

)qs ·

AdvSAMPLE
ac-omSVP,B + O

(
q2

h · n · qs/22n
)

+ qs

(
2−n + (qs − 1) · n · 2−2n

)
· 1 + ε

1− ε

1−1/a

+ 2qs

√
qh + qs · 2−saltlenbits/2.

The constant hidden by the O is independent of the choice of a.

6.3.1 Simulating the signing queries

We first show we can replace the signing oracle OSign that A has access to with a simulator
Sim that does not know the secret key sk, but instead may sample the Q dependent
distribution DQ,2σsign , and that can reprogram the random oracle H; see Fig. 7 (right)
below. This, in essence, means that Sim can be replaced by adversary B against ac-omSVP
that has access to the samp oracle and can reprogram H. As an intermediate step we
consider Transsk as specified in Fig. 7 (left). Letting SUF-CMA-Trans and SUF-CMA-Sim
denote the games where the OSign oracle has been replaced by Trans and Sim respectively,
we describe the difference in advantage of A and in particular show

AdvSUF-CMA
ΠHAWK,A ≈ AdvSUF-CMA-Trans

ΠHAWK,A ≈ AdvSUF-CMA-Sim
ΠHAWK,A .

Note that via OSign the adversary A depends on sk, and similarly for A against Trans,
which we have highlighted with a subscript. For convenience we may later omit this
subscript.

5Otherwise, we let A make dummy queries to H and OSign respectively, with the dummy queries to
OSign being on messages different from M∗, so that they do not affect the freshness of a forgery.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 55

Trans(B,hpub)(M)
1 : salt← Rnd(saltlenbits)
2 : h← (Rn/2Rn)2

3 : H(M ∥ salt) := h
4 : w← D̃Q,2σsign [h]

5 : s := 1
2(h + ⟨w⟩) ∈ R2

n

6 : return sig := (salt, s)

SimDQ,2σsign (M)
1 : salt← Rnd(saltlenbits)
2 : w← DQ,2σsign

3 : h := w mod 2
4 : H(M ∥ salt) := h

5 : s := 1
2(h + ⟨w⟩) ∈ R2

n

6 : return sig := (salt, s)

Figure 7: Oracles Transsk and SimDQ,2σsign .

The only difference between OSign and Transsk is that when the former calls Signsk it
computes h := H(M ∥ salt), while the latter instead reprogrammes H(M ∥ salt) := h ←
(Rn/2Rn)2. We note that, since Transsk has B it is able to sample w from D̃Q,2σsign [h].

Considering Lemma 3, the guessing probability of an input M ∥ salt is at most 2−saltlenbits

for any distribution over M and therefore, letting γ = 2−saltlenbits and qr = qs, we have∣∣∣∣AdvSUF-CMA
ΠHAWK,A − AdvSUF-CMA-Trans

ΠHAWK,A

∣∣∣∣ ≤ 2qs

√
qh + qs · 2−saltlenbits/2, (47)

where it is understood that the verification VfH is performed using the possibly repro-
grammed H.

We now hop from Trans to Sim. First note that in Trans after line 4, one may redefine
h := w mod 2 and H(M ∥ salt) := h without affecting the execution, since w mod 2 = h
holds when w← D̃Q,2σsign [h] by (42). After this, the only difference between Trans and Sim
is that in the former w is sampled from D̃Q,2σsign and in the latter by DQ,2σsign . Therefore,
as there are at most qs independent samples drawn from one of the two distributions, the
probability preservation of the Rényi divergence implies for every a ∈ (1,∞) that

AdvSUF-CMA-Sim
ΠHAWK,A ≥

(
AdvSUF-CMA-Trans

ΠHAWK,A

)a/(a−1)

Ra

(
D̃Q,2σsign ∥DQ,2σsign

)qs
, (48)

holds, where Ra

(
D̃Q,2σsign ∥DQ,2σsign

)
can be computed by Lemma 1. We thus conclude

that the validity of a forgery is preserved when replacing the signing oracle OSign by Sim
up to the additive factor of (47) and the multiplicative factor of (48).

Furthermore, the freshness of a signature forgery is also preserved, in that we can
assume without loss of generality that A never outputs a forgery (M∗, sig∗) that matches
the response of a signing query.

6.3.2 Extracting a fresh short vector

Consider the algorithm EH that on input a message forgery pair (M⋆, sig⋆) computes

h⋆ := H(M⋆ ∥ salt⋆), and w⋆ := 2s⋆ − h⋆ (49)

and outputs w⋆. Slightly abusing notation, we define the algorithm Bsamp := EH ◦ ASim,H.
We take it as understood that when A makes a query to Sim then B simulates this
query; in particular it obtains w ← DQ,2σsign as required by Sim by calling its samp
oracle. Furthermore, B locally simulates the random oracle H. It follows that if ASim,H

succeeds in producing a valid forgery then the w⋆ output by B is a short non-zero vector,
i.e. 0 < ∥w⋆∥Q ≤ 2σverify ·

√
2n = L. That w⋆ is non zero follows from the check on

56 HAWK

line 5 of Vf in Fig. 6. It remains to show that w⋆ is a fresh ac-omSVP solution as well,
i.e. w⋆ ̸∈ Lsamples; recall Lsamples is defined in Fig. 5.

To lower bound the probability that w⋆ is such a fresh ac-omSVP solution, assume
that (M∗, sig∗) is a valid and fresh signature forgery such that w⋆ = αwj for some (j, α) ∈
[qs]× µK , i.e. that w⋆ is not fresh. Note that we have w⋆ ≠ 0. Let (Mi, salti, hi, si, wi) be
the values taken by (M, salt, h, s, w) in the ith query of A to Sim, and let sig⋆ = (salt⋆, s⋆)
be the signature output by A. We distinguish between the following two cases.

First, M⋆ ∥ salt⋆ = Mi ∥ salti for some i ∈ [qs], where we consider i to be maximal
such that the equality holds.6 Then h⋆ = hi, and so

R2
n ∋ s⋆ = 1

2(h⋆ + w⋆) = 1
2(hi + αwj).

If i ̸= j then for any fixed choice of hi, the probability over the choice of wj of there being
an α ∈ µK as above, is at most n · 2−2n · 1+ε

1−ε by (45). There are qs choices for i and qs − 1
choices for j ̸= i. On the other hand, if i = j then we get that

R2
n ∋ s∗ = 1

2(h∗ + w∗) = 1
2(hi + αwi).

Furthermore, when i = j we have α ̸= ±1. Indeed, if α ∈ {−1, 1} then ⟨wi⟩ = ⟨w⋆⟩ = w⋆,
where the second equality holds by the validity of sig∗ and the first follows from αwi =
w⋆ ̸∈ Rn×{0} and (41). Therefore s⋆ = 1

2 (hi + ⟨wi⟩) = si which contradicts the freshness
of sig∗. The probability over the choice of wi of there being an α ∈ µK \ {±1} as above is
at most 2−n · 1+ε

1−ε by (44). There are qs choices for i = j.
Second, M⋆ ∥ salt⋆ ̸= Mi ∥ salti for every i ∈ [qs]. In this case we have that

R2
n ∋ s⋆ = 1

2(h⋆ + w⋆) = 1
2(h⋆ + αwj) ,

and so H(M⋆ ∥ salt⋆) = h⋆ = αwj mod 2; furthermore, H has not been reprogrammed
throughout the execution at the location M⋆ ∥ salt⋆. Hence

Hinit(M⋆ ∥ salt⋆) = H(M⋆ ∥ salt⋆) ∈ {αwj mod 2: (j, α) ∈ [qs]× µK} =: S, (50)

where Hinit is the initial H without any reprogramming. Thus, parsing ASim,H as CHinit ,
which runs the calls to Sim (for arbitrary but fixed samples w1, . . . , wqs

of DQ,2σsign) and
the reprogramming of H internally, we obtain an algorithm that finds a preimage under
Hinit of an element in S, making qh queries to Hinit. Note that #S ≤ nqs, so such an
algorithm can succeed with probability at most O

(
q2

h ·n ·qs/22n
)

via the standard preimage
finding bound. Hence by combining the two cases to get a non fresh forgery,

AdvSAMPLE
ac-omSVP,B ≥ AdvSUF-CMA-Sim

ΠHAWK,A − 1
2n

(
O

(
q2

h · n · qs

2n

)
+
(

qs + q2
s · n
2n

)
· 1 + ε

1− ε

)
(51)

Theorem 1 is now readily proven by combining Eqs. (47), (48) and (51).

6.3.3 Lifting to Unsimplified HAWK

We now argue in a black box manner that the security of ΠHAWK is essentially the same as
that of the following scheme:

Πfull
HAWK := (HawkKeyGen, HawkSign, HawkVerify),

6If i is not the largest, it can be (M∗, salt∗) = (Mi, salti) yet h∗ ̸= hi because h∗ is computed via the
possibly reprogrammed H.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 57

where the signing and verification are now as specified in Section 2.1. In particular a
(Q)ROM-SUF-CMA adversary against this game has a signing oracle OSignfull that restarts
on the same conditions as HawkSign.

The signature scheme ΠHAWK lacks the following steps compared to Πfull
HAWK. First, a

single evocation of HawkSign restarts with probability at most pr when certain conditions
fail. We define

pr = max
sk

[
Pr[HawkSignsk restarts when h = hmax]

]
(52)

where we quantify over all possible sk output by HawkKeyGen and hmax is the realisation
of h that maximises the probability of a restart for a given sk. This is conservative in the
sense that we are assuming an adversary can determine hmax without knowing sk and can
always choose a message M such that hmax is internally sampled, despite the salt. We
note that the public key and choice of H plays no role in signing once h is chosen.

Given access to OSign one may adaptively query it κ times for some positive integer
κ, and choose uniformly from the signatures that would not cause HawkSign to restart.
Note that whether a signature output by OSign should cause a restart is a publicly and
efficiently checkable condition. One can then simulate a call to OSignfull except if all κ
queries to OSign would cause a restart in HawkSign. All κ queries would cause a restart
with probability bounded above by prκ, and therefore by a union bound one may simulate
qs queries to OSignfull using κ · qs queries to OSign, except with probability qs · prκ.

Second, in both HawkSign and HawkVerify an initial hash M := H(m ∥ hpub) is
computed. As long as no restart occurs, a successful forgery against Πfull

HAWK implies either
a collision for H, which, via the standard collision resistance bound [AS04, Zha15], is
found with probability O((qh + κ · qs)3

/#M) where M is the codomain for the initial
hash H(m ∥ hpub), or a successful forgery against ΠHAWK.

Finally, in HawkSign the vector s is compressed for HawkVerify to decompress later.
Since the compression and decompression are public, a forgery attack against such a
compressed signature scheme can always be transformed to one against the uncompressed
counterpart.

Accounting for the above differences, for every attacker A against Πfull
HAWK making

(qs, qh) respective queries to (OSignfull, H), there is an attacker A′ against ΠHAWK as in (46),
making (κ · qs, qh) respective queries to (OSign, H), such that

AdvSUF-CMA
Πfull

HAWK,A ≤ AdvSUF-CMA
ΠHAWK,A′ + qs · prκ + O

(
(qh + κ · qs)3

/#M
)

, (53)

This concludes the security of Πfull
HAWK.

Theorem 2 (Quantum security of Πfull
HAWK). Let A be an adversary against the (Q)ROM-SUF-CMA

game making at most qs queries to OSign and at most qh quantum queries to H respectively.
Then there exists an algorithm B making qo = κ · qs queries to samp, with running time
TIME(B) = TIME(A) + Overhead(κ · qs, qh). This overhead consists of simulating qh hash
queries to H and κ ·qs queries to Sim (specified in Fig. 7). Furthermore, for each a ∈ (1,∞)
and κ ∈ Z>0 we have

AdvSUF-CMA
Πfull

HAWK,A ≤

Ra

(
D̃Q,2σsign ∥DQ,2σsign

)qs ·

AdvSAMPLE
ac-omSVP,B + O

(
q2

h · n · κ · qs/22n
)

+ κ · qs

(
2−n + (κ · qs − 1) · n · 2−2n

)
· 1 + ε

1− ε

1−1/a

+ 2κ · qs

√
qh + κ · qs · 2−saltlenbits/2 + qs · prκ + O

(
(qh + κ · qs)3

/#M
)

,

where M is the codomain of H(m ∥ hpub) and pr is an upper bound on the probability that
HawkSign restarts. The constants hidden by the O are independent of a and κ.

58 HAWK

6.4 Classical Security
As our proof is modular, one may substitute parts of the proof of Theorem 2 to obtain
better bounds when considering A that only makes classical queries to H. In (47), where
the closeness between Sign and Trans is examined, we may substitute∣∣∣AdvSUF-CMA

ΠHAWK,A − AdvSUF-CMA-Trans
ΠHAWK,A

∣∣∣ ≤ 2qs(qh + qs) · 2−saltlenbits . (54)

Moreover, to control the event (50) of finding a preimage of at most n · qs elements,
classically we have

Pr [Hinit(M⋆, salt⋆) ∈ S] ≤ (qh + 1) · n · qs/22n.

Finally, the probability of finding a collision in (53) can be replaced with O((qh + κ · qs)2
/#M),

thus

AdvSUF-CMA
Πfull

HAWK,A ≤ AdvSUF-CMA
ΠHAWK,A′ + qs · prκ + O

(
(qh + κ · qs)2

/#M
)

.

We obtain the classical security of HAWK as follows.

Theorem 3 (Classical security of Πfull
HAWK). Let A be an adversary against the (Q)ROM-SUF-CMA

game making at most qs queries to OSign and at most qh classical queries to H respectively.
Then there exists an algorithm B making qo = κ · qs queries to samp, with running time
TIME(B) = TIME(A) + Overhead(κ · qs, qh). This overhead consists of simulating qh hash
queries to H and κ ·qs queries to Sim (specified in Fig. 7). Furthermore, for each a ∈ (1,∞)
and κ ∈ Z>0 we have

AdvSUF-CMA
Πfull

HAWK,A ≤

Ra

(
D̃Q,2σsign ∥DQ,2σsign

)qs ·

AdvSAMPLE
ac-omSVP,B + (qh + 1) · n · κ · qs/22n

+ κ · qs

(
2−n + (κ · qs − 1) · n · 2−2n

)
· 1 + ε

1− ε

1−1/a

+ 2κ · qs(qh + κ · qs) · 2−saltlenbits + qs · prκ + O
(

(qh + κ · qs)2
/#M

)
,

where M is the codomain for the initial hash H(m ∥ hpub) and pr is an upper bound on
the probability that HawkSign restarts. The constants hidden by the O are independent of
a and κ.

6.5 To table based sampling HAWK
Theorem 2 is not quite the end of our reduction. There is one final leap; from Πfull

HAWK to
the HAWK specified in Section 3, namely to a HAWK that samples from a table based
approximation of D̃Q,2σsign . This table based approximation is achieved by sampling one
entry at a time, as described in Section 3.5.1 and in particular in Algorithm 14.

We first consider the Rényi divergence between D2Z,2σsign and D2Z+1,2σsign and their
table based approximations. Then, in Theorem 4 we collect the results of this section and
those above to finally relate HAWK as specified to omSVP.

Table based sampling. Let D′b be the distribution of a single coefficient d[r] for 0 ≤ r < 2n
in Algorithm 14, given that t[r] = b for b ∈ {0, 1}. Internally, the distribution D′b is
determined by the values in Tb as part of Table 5, and has support some subset of 2Z + b.

First, we consider two distributions, P1 and P2, where P1 is the distribution of all
randomness that is involved in the signing of at most qs signatures with the table based
sampler, which are requested by an adversary against HAWK, and P2 is the distribution

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 59

when using exact discrete Gaussian samplers. Let E be the event of the adversary providing
a forgery in either case. If P1(E) ≥ 2−λ then, by the probability preservation property of
the Rényi divergence [Pre17, Sec. 3.3],7 for all a ∈ (1,∞) we have

P2(E) ≥ P1(E)a/(a−1)
/Ra(P1 ∥P2) ≥ P1(E) · 1

Ra(P1 ∥P2) · 2λ/(a−1) . (55)

Note that if P1(E) < 2−λ then we are done; our adversary against table based sampling
HAWK outputs a forgery with small enough probability.

It is now left to determine Ra(P1 ∥P2) for a well chosen a. For sampling one coefficient
from either D′b or D2Z+b,2σsign the Rényi divergence can be computed numerically. Then,
the multiplicativity and data processing inequality give us

Ra(P1 ∥P2) ≤
(

max
b∈{0,1}

Ra

(
D′b ∥D2Z+b,2σsign

))2nqs

, (56)

as there are at most qs signature queries, each requiring 2n discrete Gaussian samples.
In the auxiliary data8 the Rényi divergences are calculated for HAWK-{256, 512, 1024}.

These show that for HAWK-512 and HAWK-1024 the Rényi divergence for both b ∈ {0, 1}
is smaller than 1 + 2−78 at an order a = 513, which implies at most one bit of security
being lost in this reduction by (6). In fact, the script shows that the security loss is even
smaller than one bit by considering higher orders a. In particular, for HAWK-512, at order
a = 37286 we obtain P2(E) ≥ P1(E)/1.07, and for HAWK-1024 at order a = 4181 we
obtain P2(E) ≥ P1(E)/1.17.

Total security loss when reducing omSVP to specified HAWK. We now relate the
security of HAWK as specified in Section 3 to omSVP. In particular when the sampling
discussed in Section 2.1 is implemented via Section 3.5.1 we define

Πtables
HAWK = (HawkKeyGen, HawkSign, HawkVerify),

Specifically, Πtables
HAWK is identical to Πfull

HAWK except HawkSign is now Algorithm 15, which
calls a sampler that uses precomputed tables, whereas Πfull

HAWK sampled from D̃Q,2σsign [h].

Theorem 4. Let λ ∈ {128, 256}, qs ≤ 264 and qh ≤ 2λ. Let A be a (quantum) adversary
for the (Q)ROM-SUF-CMA game against Πtables

HAWK that runs in time at most tA ≥ 1, makes
(qs, qh) queries to (OSign, H) respectively, and has success probability

εA = AdvSUF-CMA
Πtables

HAWK,A (λ),

such that tA/εA < 2λ. In particular λ = 128 corresponds to HAWK-512 and λ = 256
corresponds to HAWK-1024. Moreover, assume saltlenbits and #M are taken arbitrarily
large (in particular, at least as large as listed in Table 4).

Then, there exists a (quantum) adversary B for the SAMPLE game with the appropriate
Init(1λ) running in time at most tB = tA + Overhead(κ · qs, qh). This overhead consists of
making κ · qs queries to samp and simulating qh queries to H. The success probability of B
satisfies

AdvSAMPLE
ac-omSVP,B(λ) >

1
2εA.

Proof. Note εA > 2−λ as tA ≥ 1. We make the following five hops

1. Table based sampling (Πtables
HAWK) against (Q)ROM-SUF-CMA,

7See https://tprest.github.io/pdf/pub/renyi.pdf for the most recent version.
8See https://github.com/hawk-sign/aux/blob/main/code/generate_C_tables.py for the computa-

tion.

https://tprest.github.io/pdf/pub/renyi.pdf
https://github.com/hawk-sign/aux/blob/main/code/generate_C_tables.py

60 HAWK

2. Exact sampling (Πfull
HAWK) against (Q)ROM-SUF-CMA,

3. Simplified signing (ΠHAWK) against (Q)ROM-SUF-CMA,

4. Reprogramming H with uniform targets h (ATrans,H),

5. Reprogramming H with targets h = w mod 2 with w← DQ,2σsign (ASim,H),

6. Using oracle calls to samp, against SAMPLE (Bsamp).
For i ∈ {2, 3, 4, 5}, we use εi to mean the advantage of A transformed to the ith game.

Transforming A from 1 to 2, using Eqs. (55) and (56) and the computation from the
auxiliary data, we obtain

ε2 ≥ εA/1.17. (57)

We now estimate pr ≤ 1
2 , and discuss this more in Section 6.7. Let κ = 67 + λ and

assume #M is large enough such that O
(

(qh + κ · qs)3
/#M

)
≤ 2−λ/16 in (53). This

allows us to bound the additive loss in (53) above by 2−λ/8 + 2−λ/16 = 3
16 2−λ, giving

ε3 ≥ ε2 −
3
162−λ ≥ 0.60 εA. (58)

Now to hop from 3 to 4, we use (47). We assume saltlenbits is sufficiently large. In
particular, taking saltlenbits large enough such that the term in (47) is at most 2−λ/16
(requiring it to be larger than in Table 4), gives

ε4 ≥ ε3 − 2−λ/16 ≥ ε2 −
1
42−λ. (59)

By Lemma 1 we compute the concrete security loss from 4 to 5. The function
security_loss_cosets of the generate_C_tables.py script9 computes the minimal
security loss in (48). Here (59) and our starting assumption on εA imply ε4 ≥ 2−(λ+10)

holds, which allows us the following multiplicative loss from the Rényi divergence

ε5 ≥ ε4 ·
(

ε
1/(a−1)
4 /Ra

(
D̃Q,2σsign ∥DQ,2σsign

)qs
)
≥ ε4/

(
2

λ+10
a−1 Ra

(
D̃Q,2σsign ∥DQ,2σsign

)qs
)

.

In particular, we calculated for HAWK-512 that ε5 ≥ ε4/1.04 holds by taking the Rényi
divergence at order a = 5051, while for HAWK-1024 we get ε5 ≥ ε4/1.03 by taking the
Rényi divergence at order a = 14428. Taking the worst, from (59) we obtain

ε5 ≥ 0.60 εA/1.04 ≥ 0.57 εA. (60)

For the final hop we use (51). We use ε < 1
2 , qs ≤ 264 ≤ 2n/4 and qh ≤ 2λ ≤ 2n/4,

yielding the negligible additive loss of at most (1 + 3qs)/2n. This gives us

εB ≥
1
2 εA. (61)

Hence the success probability of B decreases by at most a factor of two.

Let λ ∈ {128, 256}. Theorem 4 tells us that if there is an adversary A against HAWK-
(4λ) with tA/εA < 2λ that makes (qs, qh) queries to (OSign, H), then there exists a (tB, εB)
adversary against the relevant ac-omSVP instance that makes κ · qs queries to samp and
has tB/εB ≤ 2tB/εA.

It remains to consider tB. We see that tB/tA = 1+Overhead(κ ·qs, qh)/tA. In the worst
case, where A makes no queries to H and performs no computation, while maximising qs,
this quotient is 1 + κ = 1 + λ + 67 ≤ 324 < 29.

Therefore tB/εB ≤ 2tB/εA < 210tA/εA < 2λ+10. The following corollary takes the
contrapositive of the above statement.

9See https://github.com/hawk-sign/aux.

https://github.com/hawk-sign/aux

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 61

Corollary 1. Let λ ∈ {128, 256}, n = 4λ, κ = λ + 67, qs ≤ 264 and qh ≤ 2λ. Consider
the ac-omSVP instance where Init(1λ) returns Q sampled from HawkKeyGen, µK as in Sec-
tion 6.1.1, L = 2

√
2n · σverify and σ = 2σsign. If, for all t ≥ 1 there is no (t, ε)-SAMPLE

adversary against ac-omSVP that makes at most qo = κ · qs queries to samp and has
t/ε < 2λ+10, then there is no (t, ε)-(Q)ROM-SUF-CMA adversary against Πtables

HAWK that
makes (qs, qh) queries to (OSign, H) such that t/ε < 2λ.

Proof. This follows from the discussion above.

6.6 Search module lattice isomorphism problem
The search module lattice isomorphism problem was formalised in [DPPvW22b, Sec. 6.1]
building upon the general lattice isomorphism formalism for cryptography proposed
in [DvW22]. Similar problems were considered before during the cryptanalytic effort
against early NTRU based signature schemes [GS02, Szy03].

Intuitively it is a problem where one is given two matrices over a field K from the same
equivalence class under some relation, and must find an invertible matrix over the ring of
integers R that relates them.

Recall, for a CM-field K and r ∈ Z≥1 we define H>0
r (K) ⊂ Kr×r as the set of all

Q ∈ Kr×r such that Q = Q⋆ and Tr(v⋆Qv) > 0 for all v ∈ Kr \ {0}, i.e. matrices that
represent Hermitian positive definite forms. We then define an equivalence relation over
H>0

r (K) where Q ∼ Q′ if and only if there exists U ∈ GLr(R) such that Q′ = U⋆QU
and write [Q] for the equivalence class of Q. This is a well defined equivalence relation as
GLr(K) is a group and therefore has an identity, inverses and is closed under composition.

Note that in [DPPvW22b] a different but equivalent definition of ∼ is given that
requires U to be in the special linear group. This simplifies proofs regarding average case
instances of module lattice isomorphism problems. The simplification of key generation in
HAWK compared to HAWK-AC22 no longer allows these average case distributions so we
simplify our presentation here, see Section 6.7 for more details. We now give the definition
of worst case smLIP.

Definition 7 (Worst case smLIP). Given a CM-field K, its ring of integers R and
Q ∈ H>0

r (K), an instance of the worst case search module lattice isomorphism problem
wc−smLIPQ

K,r is given by any Q′ ∈ [Q]. A solution is U ∈ GLr(R) such that Q′ = U⋆QU.

Note that K and r alone do not define the problem, instances are within an equivalence
class determined by Q. The specific equivalence class we work in for HAWK is [I2(K)] for
K some power of two cyclotomic, i.e. Q = I2(K) in the above definition. Furthermore, the
Q′ we are given in HAWK are not worst case, they follow the distribution of public keys
output by key generation. While this is in some formal sense an ‘average case’ distribution,
it differs from the average case distributions defined in [DvW22, DPPvW22b]. Recall
that (after passing to the unstructured setting) finding U ∈ GL2n(Z) that solves the
corresponding search lattice isomorphism problem instance is precisely the cryptanalytic
experiment we perform in Section 5.1.

6.7 Discussion
Changes to key generation and smLIP. An algorithmic difference between HAWK as
specified in Section 3 and HAWK-AC22 is the change in sampling during key generation. In
HAWK-AC22 the entries of f, g are sampled from a discrete Gaussian over Z with a given
width, whereas in HAWK this is replaced by a centred binomial distribution of similar
width. The experiments of Section 5.1 suggest this simplification makes no difference to
the practical hardness of secret key recovery via lattice reduction. However, it does not
allow us to appeal to the definitions of average case (module) search lattice isomorphism

62 HAWK

instances given in [DvW22, Sec. 3.1] and [DPPvW22b, Sec. 6.1]. In the below we follow
the notation of [DPPvW22b] which specialises to that of [DvW22] when K = Q and their
s =
√

2πσ.
The average case distributions are defined algorithmically within an equivalence class

[Q] for some Q ∈ H>0
r (K) and a width parameter σ. We denote an average case distribution

by ACσ([Q]) and the algorithm that samples it by acσ.
Distributions ACσ([Q]) have the useful property that, given any Q′ ∈ [Q] and if σ is

large enough, then on input Q′ the algorithm acσ outputs a sample according to ACσ([Q]),
along with an isomorphism between the sample and Q′. Put simply, provided σ is chosen
large enough one can use any representative element of the equivalence class [Q] to sample
from ACσ([Q]) via acσ.

This effectively allows a rerandomisation of worst case instances to average case
instances, and therefore worst case to average case reductions when σ is large, see [DvW22,
Lem. 3.9] and [DPPvW22b, Lem. 5]. A seemingly necessary property of the distributions
sampled internally in acσ to produce an output according to ACσ([Q]) is that they are
radial; the probability mass of a sampled element depends only on its ℓ2 norm. This is
not true of the centred binomial distribution, for example if X ∼ Bin(η)4 for η ≥ 2 then
(2, 0, 0, 0) has the same length as (1, 1, 1, 1) but a different probability mass.

While we therefore cannot claim any worst case to average case reduction for the
problem of recovering the secret key of HAWK from the public key, we note that this was
already the case for the concrete parameters of HAWK-AC22, where the discrete Gaussian
was used in key generation. This is because the width σkgen used in HAWK-AC22 was too
small and did not satisfy [DPPvW22b, Lem. 5].

Discussion of omSVP parametrisation. The ac-omSVP instances implicit in our reduction
from HAWK to omSVP are trivially solvable. In particular, without making any queries to
the samp oracle, an adversary can submit w⋆ = (1 0). In this case ∥w⋆∥Q = ∥(f, g)∥ ≈√

2nσkrsec ≤ 2
√

2nσverify = L. This is a consequence of us choosing σkrsec as small as our
practical cryptanalysis will allow us, see Section 5.1, and not being able to choose σverify
small enough to mitigate this without unacceptably increasing the restart probability. This
is an instance of us choosing to follow practical cryptanalysis for setting parameters, and
using our theoretical reduction to convince us of the soundness of our design; we could
easily fix this by increasing η but this would also increase the size of our public keys. We
note that, while this decision makes our reduction vacuous, we do not know practically
how to use these public key vectors to create forgeries against HAWK. More generally, one
can consider an adversary that performs lattice reduction on the form Q and possibly
combines the result with samples from the samp oracle.

Before we discuss further, we introduce a lemma that gives a concentration result (from
above and below) on the lengths of vectors sampled from a discrete Gaussian distribution
whenever ε is a negligible function of the dimension of the lattice. We specialise it to Zn

and to the width σ which is a factor
√

2π smaller than in [BF11].

Lemma 4 ([BF11, Prop. 7]). Let σ ≥ ηε(Zn) for ε a negligible function of n. For any
constant α > 0 and w← DZn,σ

Pr
[
(1− α)σ

√
n ≤ ∥w∥ ≤ (1 + α)σ

√
n
]
≥ 1− negl(n)

In particular, ∥w∥2 for w← DZn,σ is concentrated around nσ2. We could rewrite the
above as ∥w∥2

Q for w← DQ,2σsign is concentrated around 8nσ2
sign to make it more relevant

to HAWK.
Asymptotically, whenever we satisfy the conditions of Lemma 4 if we are able to

parametrise such that 2σverify < σkrsec and our threshold behaviour on lengths during lattice
reduction is accurate, then no vectors found during lattice reduction will be short enough

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 63

to act as omSVP solutions until vectors of length one begin being discovered. One can also
consider combining vectors discovered during lattice reduction on Q with w received from
samp. This was conceptualised as a weak forgery attack in [DPPvW22b, Sec. 4.3].

Another parametrisation to note is σverify >
√

2σsign. In this instance w1, w2 from samp
are such that ∥w1 + w2∥Q will be short enough to be a omSVP solution with overwhelming
probability. We assume that w1 + w2 ̸∈ Lsamples. This again does not immediately lead to
a forgery for HAWK, but if h1, h2 ∈ (Rn/2Rn)2 are such that wi ∈ hi + 2Rn then finding a
message and salt such that H(m ∥ salt) ∈ {h1, h2, h1 + h2} will lead to a forgery. Querying
many wi from samp may ease forgery, as one effectively has quadratically many targets
hi + hj with i ≠ j to find preimages of. Our parameter sets are such that σverify <

√
2σsign

by some margin.
In a more idealised setting, we are effectively asking a omSVP adversary to perform

a relaxed notion of lattice sieving for just one vector. The standard heuristic from that
literature is that the vectors w from samp are i.i.d. uniform points on a sphere of radius
2
√

2nσsign [NV08]. Rather than asking for enough distinct shorter combinations of such
w to recurse a sieving operation, the SAMPLE game asks for just one combination of w,
provided it does not fall into Lsamples, that can actually be slightly longer, by a factor of
σverify/σsign ≥ 1. Optimising k-sieving techniques [BLS16, HK17] for this setting where a
single relaxed combination is sought may be an interesting approach. Also, whether having
access to (lattice reduction on) Q can help an adversary in this setting, or whether one can
reduce to a variant of omSVP where the adversary is not given Q by showing something
equivalent can be obtained efficiently by using the samp oracle, are other interesting
avenues for further work.

Finally, the applicability of learning style attacks [NR09, DN12] to the particular
ac-omSVP instances relevant to HAWK should be considered. Lemma 1 tells us that
D̃Q,2σsign and DQ,2σsign are close, which relate to w sampled internally during HAWK signing
and the output of the samp oracle in the SAMPLE game. Recall that w is public in HAWK
signing since it can be computed from s and h. Therefore, if one can mount such a learning
style attack against HAWK signatures, then one can mount such a learning attack against
the SAMPLE game using w from samp with a very similar probability.

Altogether now, parameter selection. We now describe our rationale for parameter
selection, which one can see algorithmically as the function find_params.10

We begin with the selection of σsign. We need σsign ≥ ηε(Z2n) for a suitable ε to
appeal to Lemma 2, and also to ensure the Rényi divergence of Lemma 1 is small enough.
Ultimately “small enough” is quantified by what are acceptable sizes for the respective
losses in the reductions of Sections 6.3 to 6.5 and the effect on the practical cryptanalysis
of Section 5, but we find setting ε = 1/

√
qs · λ as in FALCON to be a reasonable value.

Increasing ε, and therefore decreasing σsign, decreases the signature sizes.
From σsign we must select σverify that is small enough that forgery is not too easy, but

also large enough that not too many signatures are rejected due to ∥w∥Q being too long.
In particular we take σverify ∈ (σsign, σkrsec]. If σverify > σkrsec then in our simulation model,
e.g. Table 7, the blocksizes required for forgery would become smaller than those for secret
key recovery. Though it is always true formally that forgery is no harder than secret
key recovery, here we are trying to practically ensure that one must recover the secret
key to forge. The value we choose for σverify in this range is maximal such that the weak
forgery attack considered in [DPPvW22b, Sec. 4.3] is sufficiently hard. Determining more
accurately the value of that attack, and in particular showing that it is ineffective, would
allow us to increase σverify. However, we note that in practice the vast majority of restarts
in signing are caused because signatures cannot be properly encoded, so decreasing σverify,
which can only improve security, would not penalise us much.

10https://github.com/hawk-sign/aux/blob/main/code/find_params.sage

https://github.com/hawk-sign/aux/blob/main/code/find_params.sage

64 HAWK

The value σkrsec is not chosen by us, but determined by simulation and our practical
cryptanalysis. To ensure that HawkKeyGen does not resample f, g too many times, the
distribution that the entries of these polynomials come from must be wide enough to satisfy
∥(f, g)∥2 > 2nσ2

krsec often enough. Thankfully, the centred binomials with η = 4 and η = 8
are sufficient. In particular, they have standard deviations

√
2 and 2 respectively which

are either close to or above σkrsec for HAWK-512 and HAWK-1024.
We now discuss our choice of saltlenbits and the codomain of the hash M ← H(m ∥ hpub)

in Algorithm 15. We choose saltlenbits = λ + log2(qs) for the practical reason that the
probability of a collision in H(m ∥ salt) over qs queries is at most 2−λ. However, in light
of Eqs. (47) and (54), this is not sufficient either classically or quantumly to make this
leap in the reduction non vacuous. Increasing saltlenbits by b bits to account for this would
require b bits more randomness per signature attempt and increase the signature size by b
bits. Similarly, we realise M ← SHAKE256(m ∥ hpub)[0 : 512]. Depending on the number
of quantum queries to H allowed, this may make (53) vacuous.

We note that saltlenbits is chosen as in FALCON, and that the codomain of the initial
hash is chosen as in DILITHIUM. Both are easy to change if required, with little effect on
the efficiency of HAWK.

Finally, in Theorem 4 we concretised the restart probability pr defined in (52) as at most
one half. It seems that this value may be possible to upper bound pr by considering the
restrictions put on f, g, F, G in HawkKeyGen and distribution on lengths of x in HawkSign.
The smaller we are able to make this upper bound, the smaller the parameter κ in our
reduction may be taken.

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 65

References
[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe, Post-

quantum key exchange - A new hope, USENIX Security 2016 (Thorsten Holz
and Stefan Savage, eds.), USENIX Association, August 2016, pp. 327–343.

[AGPS20] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M.
Schanck, Estimating quantum speedups for lattice sieves, ASIACRYPT 2020,
Part II (Shiho Moriai and Huaxiong Wang, eds.), LNCS, vol. 12492, Springer,
Heidelberg, December 2020, pp. 583–613.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wun-
derer, Revisiting the expected cost of solving uSVP and applications to LWE,
ASIACRYPT 2017, Part I (Tsuyoshi Takagi and Thomas Peyrin, eds.),
LNCS, vol. 10624, Springer, Heidelberg, December 2017, pp. 297–322.

[AS04] Scott Aaronson and Yaoyun Shi, Quantum lower bounds for the collision
and the element distinctness problems, Journal of the ACM (JACM) 51
(2004), no. 4, 595–605.

[AWHT16] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi,
Improved progressive BKZ algorithms and their precise cost estimation by
sharp simulator, EUROCRYPT 2016, Part I (Marc Fischlin and Jean-
Sébastien Coron, eds.), LNCS, vol. 9665, Springer, Heidelberg, May 2016,
pp. 789–819.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven, New directions
in nearest neighbor searching with applications to lattice sieving, 27th SODA
(Robert Krauthgamer, ed.), ACM-SIAM, January 2016, pp. 10–24.

[BDH+23] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van
Assche, Ronny Van Keer, and Benoît Viguier, TurboSHAKE, Cryptology
ePrint Archive, Report 2023/342, 2023, https://eprint.iacr.org/2023/
342.

[BF11] Dan Boneh and David Mandell Freeman, Linearly homomorphic signatures
over binary fields and new tools for lattice-based signatures, PKC 2011 (Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, eds.), LNCS,
vol. 6571, Springer, Heidelberg, March 2011, pp. 1–16.

[BGPSD23] Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-
Davidowitz, Just how hard are rotations of Zn? algorithms and cryptography
with the simplest lattice, Advances in Cryptology – EUROCRYPT 2023
(Carmit Hazay and Martijn Stam, eds.), 2023, pp. 252–281.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron
Steinfeld, Improved security proofs in lattice-based cryptography: Using the
Rényi divergence rather than the statistical distance, ASIACRYPT 2015,
Part I (Tetsu Iwata and Jung Hee Cheon, eds.), LNCS, vol. 9452, Springer,
Heidelberg, November / December 2015, pp. 3–24.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé, Tuple lattice sieving, LMS
Journal of Computation and Mathematics 19 (2016), no. A, 146–162.

[BM21] Tamar Lichter Blanks and Stephen D. Miller, Generating cryptographically-
strong random lattice bases and recognizing rotations of Zn, Post-Quantum
Cryptography - 12th International Workshop, PQCrypto 2021 (Jung Hee

https://eprint.iacr.org/2023/342
https://eprint.iacr.org/2023/342

66 HAWK

Cheon and Jean-Pierre Tillich, eds.), Springer, Heidelberg, 2021, pp. 319–
338.

[CDF+20] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian
Janson, BUFFing signature schemes beyond unforgeability and the case of
post-quantum signatures, Cryptology ePrint Archive, Report 2020/1525,
2020, https://eprint.iacr.org/2020/1525.

[CDF+21] , BUFFing signature schemes beyond unforgeability and the case of
post-quantum signatures, 2021 IEEE Symposium on Security and Privacy,
IEEE Computer Society Press, May 2021, pp. 1696–1714.

[CN11] Yuanmi Chen and Phong Q. Nguyen, BKZ 2.0: Better lattice security
estimates, ASIACRYPT 2011 (Dong Hoon Lee and Xiaoyun Wang, eds.),
LNCS, vol. 7073, Springer, Heidelberg, December 2011, pp. 1–20.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi,
LWE with side information: Attacks and concrete security estimation,
CRYPTO 2020, Part II (Daniele Micciancio and Thomas Ristenpart, eds.),
LNCS, vol. 12171, Springer, Heidelberg, August 2020, pp. 329–358.

[DEP23] Léo Ducas, Thomas Espitau, and Eamonn W. Postlethwaite, Finding short
integer solutions when the modulus is small, To appear at CRYPTO’23,
2023.

[DN12] Léo Ducas and Phong Q. Nguyen, Learning a zonotope and more: Crypt-
analysis of NTRUSign countermeasures, ASIACRYPT 2012 (Xiaoyun Wang
and Kazue Sako, eds.), LNCS, vol. 7658, Springer, Heidelberg, December
2012, pp. 433–450.

[DPPvW22a] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel van
Woerden, Hawk: Module LIP makes lattice signatures fast, compact and
simple, Cryptology ePrint Archive, Report 2022/1155, 2022, https://
eprint.iacr.org/2022/1155.

[DPPvW22b] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J.
van Woerden, Hawk: Module LIP makes lattice signatures fast, compact
and simple, ASIACRYPT 2022, Part IV (Shweta Agrawal and Dongdai Lin,
eds.), LNCS, vol. 13794, Springer, Heidelberg, December 2022, pp. 65–94.

[Duc18] Léo Ducas, Shortest vector from lattice sieving: A few dimensions for free,
EUROCRYPT 2018, Part I (Jesper Buus Nielsen and Vincent Rijmen, eds.),
LNCS, vol. 10820, Springer, Heidelberg, April / May 2018, pp. 125–145.

[Duc22] Léo Ducas, Estimating the hidden overheads in the bdgl lattice sieving
algorithm, Post-Quantum Cryptography (Cham) (Jung Hee Cheon and
Thomas Johansson, eds.), Springer International Publishing, 2022, pp. 480–
497.

[Duc23] Léo Ducas, Provable lattice reduction of Zn with blocksize n/2, Cryptology
ePrint Archive, Paper 2023/447, 2023, https://eprint.iacr.org/2023/
447.

[DvW22] Léo Ducas and Wessel P. J. van Woerden, On the lattice isomorphism
problem, quadratic forms, remarkable lattices, and cryptography, EURO-
CRYPT 2022, Part III (Orr Dunkelman and Stefan Dziembowski, eds.),
LNCS, vol. 13277, Springer, Heidelberg, May / June 2022, pp. 643–673.

https://eprint.iacr.org/2020/1525
https://eprint.iacr.org/2022/1155
https://eprint.iacr.org/2022/1155
https://eprint.iacr.org/2023/447
https://eprint.iacr.org/2023/447

Bos, Bronchain, Ducas, Fehr, Huang, Pornin, Postlethwaite, Prest, Pulles, van Woerden 67

[EK20] Thomas Espitau and Paul Kirchner, The nearest-colattice algorithm: time-
approximation tradeoff for approx-CVP, The Open Book Series 4 (2020),
no. 1, 251–266, ANTS XIV.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu, Shorter
hash-and-sign lattice-based signatures, CRYPTO 2022, Part II (Yevgeniy
Dodis and Thomas Shrimpton, eds.), LNCS, vol. 13508, Springer, Heidelberg,
August 2022, pp. 245–275.

[FH23] Serge Fehr and Yu-Hsuan Huang, On the quantum security of hawk, Cryp-
tology ePrint Archive, Paper 2023/711, 2023, https://eprint.iacr.org/
2023/711.

[FIP15] SHA-3 standard: Permutation-based hash and extendable-output functions,
National Institute of Standards and Technology, NIST FIPS PUB 202, U.S.
Department of Commerce, August 2015.

[GHHM21] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz,
Tight adaptive reprogramming in the QROM, ASIACRYPT 2021, Part I
(Mehdi Tibouchi and Huaxiong Wang, eds.), LNCS, vol. 13090, Springer,
Heidelberg, December 2021, pp. 637–667.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan, Trapdoors for hard
lattices and new cryptographic constructions, 40th ACM STOC (Richard E.
Ladner and Cynthia Dwork, eds.), ACM Press, May 2008, pp. 197–206.

[GS02] Craig Gentry and Michael Szydlo, Cryptanalysis of the revised NTRU
signature scheme, EUROCRYPT 2002 (Lars R. Knudsen, ed.), LNCS, vol.
2332, Springer, Heidelberg, April / May 2002, pp. 299–320.

[HK17] Gottfried Herold and Elena Kirshanova, Improved algorithms for the ap-
proximate k-list problem in euclidean norm, PKC 2017, Part I (Serge Fehr,
ed.), LNCS, vol. 10174, Springer, Heidelberg, March 2017, pp. 16–40.

[Kec11] Keccak implementation overview, Submitted to NIST’s SHA-3
competition, September 2011, https://keccak.team/obsolete/
Keccak-implementation-3.1.pdf.

[KO62] Anatoly Karatsuba and Yuri Ofman, Multiplication of many-digital numbers
by automatic computers, Proceedings of the USSR Academy of Sciences 145
(1962), no. 2, 293–294.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai, CRYSTALS-
DILITHIUM, Tech. report, National Institute of Standards and
Technology, 2022, available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[MR04] Daniele Micciancio and Oded Regev, Worst-case to average-case reductions
based on Gaussian measures, 45th FOCS, IEEE Computer Society Press,
October 2004, pp. 372–381.

[MW16] Daniele Micciancio and Michael Walter, Practical, predictable lattice basis
reduction, EUROCRYPT 2016, Part I (Marc Fischlin and Jean-Sébastien
Coron, eds.), LNCS, vol. 9665, Springer, Heidelberg, May 2016, pp. 820–849.

https://eprint.iacr.org/2023/711
https://eprint.iacr.org/2023/711
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://keccak.team/obsolete/Keccak-implementation-3.1.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

68 HAWK

[NR09] Phong Q. Nguyen and Oded Regev, Learning a parallelepiped: Cryptanalysis
of GGH and NTRU signatures, Journal of Cryptology 22 (2009), no. 2,
139–160.

[NV08] Phong Q. Nguyen and Thomas Vidick, Sieve algorithms for the shortest
vector problem are practical, J. Mathematical Cryptology 2 (2008), no. 2,
181–207.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang, FALCON, Tech. report, National Institute of
Standards and Technology, 2022, available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[Por23] Thomas Pornin, Improved key pair generation for falcon, BAT and hawk,
Cryptology ePrint Archive, Report 2023/290, 2023, https://eprint.iacr.
org/2023/290.

[PP19] Thomas Pornin and Thomas Prest, More efficient algorithms for the NTRU
key generation using the field norm, PKC 2019, Part II (Dongdai Lin and
Kazue Sako, eds.), LNCS, vol. 11443, Springer, Heidelberg, April 2019,
pp. 504–533.

[Pre17] Thomas Prest, Sharper bounds in lattice-based cryptography using the Rényi
divergence, ASIACRYPT 2017, Part I (Tsuyoshi Takagi and Thomas Peyrin,
eds.), LNCS, vol. 10624, Springer, Heidelberg, December 2017, pp. 347–374.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, Damien Stehlé, and Jintai Ding, CRYSTALS-KYBER, Tech.
report, National Institute of Standards and Technology, 2022, available
at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[Szy03] Michael Szydlo, Hypercubic lattice reduction and analysis of GGH and
NTRU signatures, EUROCRYPT 2003 (Eli Biham, ed.), LNCS, vol. 2656,
Springer, Heidelberg, May 2003, pp. 433–448.

[Zha15] Mark Zhandry, A note on the quantum collision and set equality problems,
Quantum Information and Computation 15 (2015), no. 7-8, 557–567.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2023/290
https://eprint.iacr.org/2023/290
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

	Introduction
	Advantages and Limitations
	Changelog

	Preliminaries
	High level algorithmic description of HAWK

	Specifications
	Overview
	Parameters
	Encoding and Decoding
	Key Pair Generation
	Signature Generation
	Signature Verification

	Implementations
	Software Implementation Techniques
	Benchmarks

	Cryptanalysis
	Secret key recovery
	Strong forgery
	Estimated blocksizes

	Formal Security
	Preliminaries
	The one more shortest vector problem
	Quantum security of HAWK
	Classical Security
	To table based sampling HAWK
	Search module lattice isomorphism problem
	Discussion

